Your browser doesn't support javascript.
loading
Artery-vein segmentation in fundus images using a fully convolutional network.
Hemelings, Ruben; Elen, Bart; Stalmans, Ingeborg; Van Keer, Karel; De Boever, Patrick; Blaschko, Matthew B.
Afiliación
  • Hemelings R; Research Group Ophthalmology, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; ESAT-PSI, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium; VITO NV, Boeretang 200, 2400 Mol, Belgium.
  • Elen B; VITO NV, Boeretang 200, 2400 Mol, Belgium.
  • Stalmans I; Research Group Ophthalmology, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium.
  • Van Keer K; Research Group Ophthalmology, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium.
  • De Boever P; Hasselt University, Agoralaan building D, 3590 Diepenbeek, Belgium; VITO NV, Boeretang 200, 2400 Mol, Belgium. Electronic address: patrick.deboever@vito.be.
  • Blaschko MB; ESAT-PSI, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium.
Comput Med Imaging Graph ; 76: 101636, 2019 09.
Article en En | MEDLINE | ID: mdl-31288217
ABSTRACT
Epidemiological studies demonstrate that dimensions of retinal vessels change with ocular diseases, coronary heart disease and stroke. Different metrics have been described to quantify these changes in fundus images, with arteriolar and venular calibers among the most widely used. The analysis often includes a manual procedure during which a trained grader differentiates between arterioles and venules. This step can be time-consuming and can introduce variability, especially when large volumes of images need to be analyzed. In light of the recent successes of fully convolutional networks (FCNs) applied to biomedical image segmentation, we assess its potential in the context of retinal artery-vein (A/V) discrimination. To the best of our knowledge, a deep learning (DL) architecture for simultaneous vessel extraction and A/V discrimination has not been previously employed. With the aim of improving the automation of vessel analysis, a novel application of the U-Net semantic segmentation architecture (based on FCNs) on the discrimination of arteries and veins in fundus images is presented. By utilizing DL, results are obtained that exceed accuracies reported in the literature. Our model was trained and tested on the public DRIVE and HRF datasets. For DRIVE, measuring performance on vessels wider than two pixels, the FCN achieved accuracies of 94.42% and 94.11% on arteries and veins, respectively. This represents a decrease in error of 25% over the previous state of the art reported by Xu et al. (2017). Additionally, we introduce the HRF A/V ground truth, on which our model achieves 96.98% accuracy on all discovered centerline pixels. HRF A/V ground truth validated by an ophthalmologist, predicted A/V annotations and evaluation code are available at https//github.com/rubenhx/av-segmentation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vasos Retinianos / Aprendizaje Profundo / Fondo de Ojo Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Comput Med Imaging Graph Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2019 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vasos Retinianos / Aprendizaje Profundo / Fondo de Ojo Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Comput Med Imaging Graph Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2019 Tipo del documento: Article País de afiliación: Bélgica