Your browser doesn't support javascript.
loading
A metal-organic framework for efficient water-based ultra-low-temperature-driven cooling.
Lenzen, Dirk; Zhao, Jingjing; Ernst, Sebastian-Johannes; Wahiduzzaman, Mohammad; Ken Inge, A; Fröhlich, Dominik; Xu, Hongyi; Bart, Hans-Jörg; Janiak, Christoph; Henninger, Stefan; Maurin, Guillaume; Zou, Xiaodong; Stock, Norbert.
Afiliación
  • Lenzen D; Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany.
  • Zhao J; Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
  • Ernst SJ; Department Heating and Cooling Technologies, Group Sorption Materials, Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstrasse 2, 79110, Freiburg, Germany.
  • Wahiduzzaman M; TU Kaiserslautern, Chair of Separation Science and Technology, P.O. Box 3049, 67653, Kaiserslautern, Germany.
  • Ken Inge A; Institut Charles Gerhardt Montpellier, Université Montpellier, UMR 5253 CNRS ENSCM UM, 34095 Montpellier, France.
  • Fröhlich D; Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
  • Xu H; Department Heating and Cooling Technologies, Group Sorption Materials, Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstrasse 2, 79110, Freiburg, Germany.
  • Bart HJ; Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
  • Janiak C; TU Kaiserslautern, Chair of Separation Science and Technology, P.O. Box 3049, 67653, Kaiserslautern, Germany.
  • Henninger S; Institut für Anorganische Chemie und Strukturchemie I, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
  • Maurin G; Department Heating and Cooling Technologies, Group Sorption Materials, Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstrasse 2, 79110, Freiburg, Germany. stefan.henninger@ise.fraunhofer.de.
  • Zou X; Institut Charles Gerhardt Montpellier, Université Montpellier, UMR 5253 CNRS ENSCM UM, 34095 Montpellier, France. guillaume.maurin@univ-montp2.fr.
  • Stock N; Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden. xzou@mmk.su.se.
Nat Commun ; 10(1): 3025, 2019 Jul 09.
Article en En | MEDLINE | ID: mdl-31289274
ABSTRACT
Efficient use of energy for cooling applications is a very important and challenging field in science. Ultra-low temperature actuated (Tdriving < 80 °C) adsorption-driven chillers (ADCs) with water as the cooling agent are one environmentally benign option. The nanoscale metal-organic framework [Al(OH)(C6H2O4S)] denoted CAU-23 was discovered that possess favorable properties, including water adsorption capacity of 0.37 gH2O/gsorbent around p/p0 = 0.3 and cycling stability of at least 5000 cycles. Most importantly the material has a driving temperature down to 60 °C, which allows for the exploitation of yet mostly unused temperature sources and a more efficient use of energy. These exceptional properties are due to its unique crystal structure, which was unequivocally elucidated by single crystal electron diffraction. Monte Carlo simulations were performed to reveal the water adsorption mechanism at the atomic level. With its green synthesis, CAU-23 is an ideal material to realize ultra-low temperature driven ADC devices.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Alemania