Your browser doesn't support javascript.
loading
More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction.
Li, Baoqiang; Esipova, Tatiana V; Sencan, Ikbal; Kiliç, Kivilcim; Fu, Buyin; Desjardins, Michele; Moeini, Mohammad; Kura, Sreekanth; Yaseen, Mohammad A; Lesage, Frederic; Østergaard, Leif; Devor, Anna; Boas, David A; Vinogradov, Sergei A; Sakadzic, Sava.
Afiliación
  • Li B; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.
  • Esipova TV; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.
  • Sencan I; Department of Chemistry, University of Pennsylvania, Philadelphia, United States.
  • Kiliç K; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.
  • Fu B; Department of Neurosciences, University of California, San Diego, La Jolla, United States.
  • Desjardins M; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.
  • Moeini M; Department of Radiology, University of California, San Diego, La Jolla, United States.
  • Kura S; Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada.
  • Yaseen MA; Research Centre, Montreal Heart Institute, Montréal, Canada.
  • Lesage F; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.
  • Østergaard L; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.
  • Devor A; Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada.
  • Boas DA; Research Centre, Montreal Heart Institute, Montréal, Canada.
  • Vinogradov SA; Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
  • Sakadzic S; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.
Elife ; 82019 07 15.
Article en En | MEDLINE | ID: mdl-31305237
ABSTRACT
Our understanding of how capillary blood flow and oxygen distribute across cortical layers to meet the local metabolic demand is incomplete. We addressed this question by using two-photon imaging of resting-state microvascular oxygen partial pressure (PO2) and flow in the whisker barrel cortex in awake mice. Our measurements in layers I-V show that the capillary red-blood-cell flux and oxygenation heterogeneity, and the intracapillary resistance to oxygen delivery, all decrease with depth, reaching a minimum around layer IV, while the depth-dependent oxygen extraction fraction is increased in layer IV, where oxygen demand is presumably the highest. Our findings suggest that more homogeneous distribution of the physiological observables relevant to oxygen transport to tissue is an important part of the microvascular network adaptation to local brain metabolism. These results will inform the biophysical models of layer-specific cerebral oxygen delivery and consumption and improve our understanding of the diseases that affect cerebral microcirculation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxígeno / Capilares / Corteza Cerebral / Circulación Cerebrovascular Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Elife Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxígeno / Capilares / Corteza Cerebral / Circulación Cerebrovascular Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Elife Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos