IL-17C Protects Nasal Epithelium from Pseudomonas aeruginosa Infection.
Am J Respir Cell Mol Biol
; 62(1): 95-103, 2020 01.
Article
en En
| MEDLINE
| ID: mdl-31318581
IL-17 family cytokines are directly involved in host immune responses and the critical mediators for host defense against infection or inflammation. IL-17C is highly expressed in respiratory epithelium and is induced after acute bacterial lung infection. However, the definite function of IL-17C induced by Pseudomonas aeruginosa (PAO1 strain) is not fully understood, and our study was designed to demonstrate IL-17C-induced immune response against PAO1 infection in nasal epithelium. Passage-2 normal human nasal epithelial (NHNE) cells were infected with PAO1 and the relationship between IL-17C-related immune responses and the iron absorption of PAO1, depending on inoculation of recombinant human IL-17C (rhIL-17C), was assessed by measuring the siderophore activity of PAO1. Microarray data showed that IL-17C expression increased 34.7 times at 8 hours postinfection (hpi) in NHNE cells, and IL-17C mRNA levels increased until 48 hpi. The PAO1 colonies significantly increased from 8 hpi in NHNE cells, and siderophore activity of PAO1 was enhanced in the supernatants of PAO1-infected NHNE cells. Interestingly, PAO1 colonies were reduced in PAO1-infected NHNE cells treated with rhIL-17C, and supernatants from NHNE cells treated with rhIL-17C also exhibited decreased PAO1 colonies. We found that the siderophore activity of PAO1 was significantly reduced in the supernatants of NHNE cells treated with rhIL-17C where LCN2 expression was highly elevated. Our findings indicate that IL-17C mediates an antibacterial effect against PAO1 by inhibiting siderophore activity in nasal epithelium. We propose that IL-17C might be an efficient mediator to suppress PAO1 infection through disturbing iron absorption of PAO1 in nasal epithelium.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Pseudomonas aeruginosa
/
Infecciones por Pseudomonas
/
Interleucina-17
/
Mucosa Respiratoria
/
Mucosa Nasal
Límite:
Humans
Idioma:
En
Revista:
Am J Respir Cell Mol Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2020
Tipo del documento:
Article
Pais de publicación:
Estados Unidos