Your browser doesn't support javascript.
loading
SMAC, a computational system to link literature, biomedical and expression data.
Pirrò, Stefano; Gadaleta, Emanuela; Galgani, Andrea; Colizzi, Vittorio; Chelala, Claude.
Afiliación
  • Pirrò S; Bioinformatics Unit, Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University London, London, EC1M 6BQ, UK. s.pirro@qmul.ac.uk.
  • Gadaleta E; Department of Biology, University of Rome Tor Vergata, Rome, Italy. s.pirro@qmul.ac.uk.
  • Galgani A; Bioinformatics Unit, Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University London, London, EC1M 6BQ, UK.
  • Colizzi V; Interdepartmental Centre for Animal Technology, University of Rome Tor Vergata, Rome, Italy.
  • Chelala C; Department of Biology, University of Rome Tor Vergata, Rome, Italy.
Sci Rep ; 9(1): 10480, 2019 07 19.
Article en En | MEDLINE | ID: mdl-31324861
High-throughput technologies have produced a large amount of experimental and biomedical data creating an urgent need for comprehensive and automated mining approaches. To meet this need, we developed SMAC (SMart Automatic Classification method): a tool to extract, prioritise, integrate and analyse biomedical and molecular data according to user-defined terms. The robust ranking step performed on Medical Subject Headings (MeSH) ensures that papers are prioritised based on specific user requirements. SMAC then retrieves any related molecular data from the Gene Expression Omnibus and performs a wide range of bioinformatics analyses to extract biological insights. These features make SMAC a robust tool to explore the literature around any biomedical topic. SMAC can easily be customised/expanded and is distributed as a Docker container ( https://hub.docker.com/r/hfx320/smac ) ready-to-use on Windows, Mac and Linux OS. SMAC's functionalities have already been adapted and integrated into the Breast Cancer Now Tissue Bank bioinformatics platform and the Pancreatic Expression Database.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Publicaciones Periódicas como Asunto / Expresión Génica / Almacenamiento y Recuperación de la Información / Minería de Datos Límite: Humans Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Publicaciones Periódicas como Asunto / Expresión Génica / Almacenamiento y Recuperación de la Información / Minería de Datos Límite: Humans Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article Pais de publicación: Reino Unido