Your browser doesn't support javascript.
loading
Fabrication of High-resolution Graphene-based Flexible Electronics via Polymer Casting.
Uz, Metin; Jackson, Kyle; Donta, Maxsam S; Jung, Juhyung; Lentner, Matthew T; Hondred, John A; Claussen, Jonathan C; Mallapragada, Surya K.
Afiliación
  • Uz M; Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA.
  • Jackson K; Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA.
  • Donta MS; Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA.
  • Jung J; Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA.
  • Lentner MT; Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA.
  • Hondred JA; Department of Mechanical Engineering, Iowa State University, Ames, Iowa, 50011, USA.
  • Claussen JC; Department of Mechanical Engineering, Iowa State University, Ames, Iowa, 50011, USA.
  • Mallapragada SK; Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA. suryakm@iastate.edu.
Sci Rep ; 9(1): 10595, 2019 07 22.
Article en En | MEDLINE | ID: mdl-31332270
ABSTRACT
In this study, a novel method based on the transfer of graphene patterns from a rigid or flexible substrate onto a polymeric film surface via solvent casting was developed. The method involves the creation of predetermined graphene patterns on the substrate, casting a polymer solution, and directly transferring the graphene patterns from the substrate to the surface of the target polymer film via a peeling-off method. The feature sizes of the graphene patterns on the final film can vary from a few micrometers (as low as 5 µm) to few millimeters range. This process, applied at room temperature, eliminates the need for harsh post-processing techniques and enables creation of conductive graphene circuits (sheet resistance ~0.2 kΩ/sq) with high stability (stable after 100 bending and 24 h washing cycles) on various polymeric flexible substrates. Moreover, this approach allows precise control of the substrate properties such as composition, biodegradability, 3D microstructure, pore size, porosity and mechanical properties using different film formation techniques. This approach can also be used to fabricate flexible biointerfaces to control stem cell behavior, such as differentiation and alignment. Overall, this promising approach provides a facile and low-cost method for the fabrication of flexible and stretchable electronic circuits.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM