Your browser doesn't support javascript.
loading
The importance of the multiplex ligation-dependent probe amplification in the identification of a novel two-exon deletion of the NR5A1 gene in a patient with 46,XY differences of sex development.
Nagy, Orsolya; Kárteszi, Judit; Hartwig, Marianna; Bertalan, Rita; Jávorszky, Eszter; Erhardt, Éva; Patócs, Attila; Tornóczky, Tamás; Balogh, István; Ujfalusi, Anikó.
Afiliación
  • Nagy O; Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
  • Kárteszi J; Hospital of Zala County, Zalaegerszeg, Hungary.
  • Hartwig M; Hospital of Zala County, Zalaegerszeg, Hungary.
  • Bertalan R; 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.
  • Jávorszky E; 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.
  • Erhardt É; MTA-SE Lendulet Nephrogenetic Laboratory, Budapest, Hungary.
  • Patócs A; Department of Pediatrics, University of Pécs, Pécs, Hungary.
  • Tornóczky T; Endocrin Genetics Laboratory, Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
  • Balogh I; Department of Pathology, University of Pécs, Medical School, Pécs, Hungary.
  • Ujfalusi A; Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
Mol Biol Rep ; 46(5): 5595-5601, 2019 Oct.
Article en En | MEDLINE | ID: mdl-31338750
ABSTRACT
Gonadal dysgenesis (GD) is a rare cause of differences of sex development (DSD) with highly variable clinical and genetic conditions. Although identification of the causative genetic alterations can offer a clearer prognosis and personalized management to patients, more than 50% of the DSD cases still do not have an accurate genetic diagnosis. NR5A1 (previously known as SF-1), is a transcriptional regulator of genes required for normal development and functional maintenance of the gonads and the adrenal glands. Nucleotide sequence variants of the NR5A1 gene have been reported in numerous patients with GD with or without adrenal failure, however, microdeletion or partial deletion in the NR5A1 gene have been described only in a few GD cases. In this case study, we present a subject with female phenotype, mild clitoromegaly, partial GD and normal adrenal function. Cytogenetic analysis revealed a 46,XY SRY + karyotype. Microarray analysis did not identify pathogenic copy number variations, nor did panel sequencing of the most common DSD genes. Subsequently, multiplex ligation-dependent probe amplification (MLPA) was performed to test for small deletion/duplication of the most frequently affected genes associated with GD. Using this method, we have identified a novel heterozygous deletion involving exons 5 and 6 of the NR5A1 gene as the cause of abnormal sexual development of the patient. This report expands our knowledge about the range and pathogenetic role of NR5A1 mutations associated with partial gonadal dysgenesis in 46,XY DSD. Furthermore, our data emphasises the indispensable role of MLPA in the diagnosis of DSD with unclear etiology.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Testículo / Factor Esteroidogénico 1 / Trastorno del Desarrollo Sexual 46,XY / Reacción en Cadena de la Polimerasa Multiplex Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Female / Humans Idioma: En Revista: Mol Biol Rep Año: 2019 Tipo del documento: Article País de afiliación: Hungria

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Testículo / Factor Esteroidogénico 1 / Trastorno del Desarrollo Sexual 46,XY / Reacción en Cadena de la Polimerasa Multiplex Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Female / Humans Idioma: En Revista: Mol Biol Rep Año: 2019 Tipo del documento: Article País de afiliación: Hungria