Your browser doesn't support javascript.
loading
Quantitative secretome analysis unravels new secreted proteins in Amphotericin B resistant Leishmania donovani.
Garg, Gaurav; Ali, Vahab; Singh, Kuljit; Gupta, Parool; Ganguly, Ashish; Sahasrabuddhe, Amogh A; Das, Pradeep.
Afiliación
  • Garg G; Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur 844102, India.
  • Ali V; Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur 844102, India. E
  • Singh K; Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur 844102, India.
  • Gupta P; Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India.
  • Ganguly A; CSIR- Institute of Microbial Technology, Chandigarh, India.
  • Sahasrabuddhe AA; Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India.
  • Das P; Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India.
J Proteomics ; 207: 103464, 2019 09 15.
Article en En | MEDLINE | ID: mdl-31357030
ABSTRACT
Leishmaniasis is second most neglected disease after malaria and seems to be a worldwide concern because of increased drug resistance and non-availability of approved vaccine. The underlying molecular mechanism of drug resistance (Amp B) in Leishmania parasites still remains elusive. Herein, the present study investigated differentially expressed secreted proteins of Amphotericin B sensitive (S) and resistant (R) isolate of Leishmania donovani by using label free quantitative LC-MS/MS approach. A total of 406 differentially expressed secreted proteins were found between sensitive (S) and resistant (R) isolate. Among 406 proteins, 32 were significantly up regulated (>2.0 fold) while 22 were down regulated (<0.5 fold) in resistant isolate of L. donovani. Further, differentially expressed proteins were classified into 11 various biological processes. Interestingly, identified up regulated proteins in resistant parasites were dominated in carbohydrate metabolism, stress response, transporters and proteolysis. Western blot and enzymatic activity of identified proteins validate our proteomic findings. Finally, our study demonstrated some new secreted proteins associated with Amp B resistance which provides a basis for further investigations to understand the role of proteins in L. donovani. BIOLOGICAL

SIGNIFICANCE:

Although great advances have been achieved in the diagnosis and treatment of leishmaniasis, still drug resistance is major hurdle in control of disease. Present study will enhance the deeper understanding of altered metabolic pathways involved in Amp B resistance mechanism and provide possible new proteins which can be potential candidate either for exploring as new drug target or vaccine. Protein-protein interactions highlighted the up-regulated metabolic pathways in resistant parasites which further unravel the adaptive mechanism of parasites.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Leishmania donovani / Resistencia a Medicamentos / Proteínas Protozoarias / Anfotericina B / Proteómica / Antiprotozoarios Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Proteomics Asunto de la revista: BIOQUIMICA Año: 2019 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Leishmania donovani / Resistencia a Medicamentos / Proteínas Protozoarias / Anfotericina B / Proteómica / Antiprotozoarios Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Proteomics Asunto de la revista: BIOQUIMICA Año: 2019 Tipo del documento: Article País de afiliación: India