Your browser doesn't support javascript.
loading
High performance III-V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry.
Lim, Haneol; Young, James L; Geisz, John F; Friedman, Daniel J; Deutsch, Todd G; Yoon, Jongseung.
Afiliación
  • Lim H; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA.
  • Young JL; National Renewable Energy Laboratory, Golden, CO, 80401, USA.
  • Geisz JF; National Renewable Energy Laboratory, Golden, CO, 80401, USA.
  • Friedman DJ; National Renewable Energy Laboratory, Golden, CO, 80401, USA.
  • Deutsch TG; National Renewable Energy Laboratory, Golden, CO, 80401, USA.
  • Yoon J; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA. jsyoon@alum.mit.edu.
Nat Commun ; 10(1): 3388, 2019 Jul 29.
Article en En | MEDLINE | ID: mdl-31358745
ABSTRACT
Catalytic interface of semiconductor photoelectrodes is critical for high-performance photoelectrochemical solar water splitting because of its multiple roles in light absorption, electrocatalysis, and corrosion protection. Nevertheless, simultaneously optimizing each of these processes represents a materials conundrum owing to conflicting requirements of materials attributes at the electrode surface. Here we show an approach that can circumvent these challenges by collaboratively exploiting corrosion-resistant surface stoichiometry and structurally-tailored reactive interface. Nanoporous, density-graded surface of 'black' gallium indium phosphide (GaInP2), when combined with ammonium-sulfide-based surface passivation, effectively reduces reflection and surface recombination of photogenerated carriers for high efficiency photocatalysis in the hydrogen evolution half-reaction, but also augments electrochemical durability with lifetime over 124 h via strongly suppressed kinetics of corrosion. Such synergistic control of stoichiometry and structure at the reactive interface provides a practical pathway to concurrently enhance efficiency and durability of semiconductor photoelectrodes without solely relying on the development of new protective materials.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos