Your browser doesn't support javascript.
loading
Increasing Ca2+ in photoreceptor mitochondria alters metabolites, accelerates photoresponse recovery, and reveals adaptations to mitochondrial stress.
Hutto, Rachel A; Bisbach, Celia M; Abbas, Fatima; Brock, Daniel C; Cleghorn, Whitney M; Parker, Edward D; Bauer, Benjamin H; Ge, William; Vinberg, Frans; Hurley, James B; Brockerhoff, Susan E.
Afiliación
  • Hutto RA; Biochemistry Department, University of Washington, Seattle, WA, 98109, USA.
  • Bisbach CM; Biochemistry Department, University of Washington, Seattle, WA, 98109, USA.
  • Abbas F; John A. Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA.
  • Brock DC; Biochemistry Department, University of Washington, Seattle, WA, 98109, USA.
  • Cleghorn WM; Biochemistry Department, University of Washington, Seattle, WA, 98109, USA.
  • Parker ED; Opthalmology Department, University of Washington, Seattle, WA, 98109, USA.
  • Bauer BH; Biochemistry Department, University of Washington, Seattle, WA, 98109, USA.
  • Ge W; Biochemistry Department, University of Washington, Seattle, WA, 98109, USA.
  • Vinberg F; John A. Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA.
  • Hurley JB; Biochemistry Department, University of Washington, Seattle, WA, 98109, USA.
  • Brockerhoff SE; Opthalmology Department, University of Washington, Seattle, WA, 98109, USA.
Cell Death Differ ; 27(3): 1067-1085, 2020 03.
Article en En | MEDLINE | ID: mdl-31371786
ABSTRACT
Photoreceptors are specialized neurons that rely on Ca2+ to regulate phototransduction and neurotransmission. Photoreceptor dysfunction and degeneration occur when intracellular Ca2+ homeostasis is disrupted. Ca2+ homeostasis is maintained partly by mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU), which can influence cytosolic Ca2+ signals, stimulate energy production, and trigger apoptosis. Here we discovered that zebrafish cone photoreceptors express unusually low levels of MCU. We expected that this would be important to prevent mitochondrial Ca2+ overload and consequent cone degeneration. To test this hypothesis, we generated a cone-specific model of MCU overexpression. Surprisingly, we found that cones tolerate MCU overexpression, surviving elevated mitochondrial Ca2+ and disruptions to mitochondrial ultrastructure until late adulthood. We exploited the survival of MCU overexpressing cones to additionally demonstrate that mitochondrial Ca2+ uptake alters the distributions of citric acid cycle intermediates and accelerates recovery kinetics of the cone response to light. Cones adapt to mitochondrial Ca2+ stress by decreasing MICU3, an enhancer of MCU-mediated Ca2+ uptake, and selectively transporting damaged mitochondria away from the ellipsoid toward the synapse. Our findings demonstrate how mitochondrial Ca2+ can influence physiological and metabolic processes in cones and highlight the remarkable ability of cone photoreceptors to adapt to mitochondrial stress.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estrés Fisiológico / Adaptación Fisiológica / Calcio / Células Fotorreceptoras Retinianas Conos / Metaboloma / Luz / Mitocondrias Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Cell Death Differ Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estrés Fisiológico / Adaptación Fisiológica / Calcio / Células Fotorreceptoras Retinianas Conos / Metaboloma / Luz / Mitocondrias Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Cell Death Differ Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos