Your browser doesn't support javascript.
loading
Transient heat release during induced mitochondrial proton uncoupling.
Rajagopal, Manjunath C; Brown, Jeffrey W; Gelda, Dhruv; Valavala, Krishna V; Wang, Huan; Llano, Daniel A; Gillette, Rhanor; Sinha, Sanjiv.
Afiliación
  • Rajagopal MC; 1Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
  • Brown JW; 2College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
  • Gelda D; 1Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
  • Valavala KV; 1Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
  • Wang H; Re3 Innovative Neuroscience Institute, Sarasota, FL USA.
  • Llano DA; 4Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
  • Gillette R; 4Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
  • Sinha S; 1Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
Commun Biol ; 2: 279, 2019.
Article en En | MEDLINE | ID: mdl-31372518
ABSTRACT
Non-shivering thermogenesis through mitochondrial proton uncoupling is one of the dominant thermoregulatory mechanisms crucial for normal cellular functions. The metabolic pathway for intracellular temperature rise has widely been considered as steady-state substrate oxidation. Here, we show that a transient proton motive force (pmf) dissipation is more dominant than steady-state substrate oxidation in stimulated thermogenesis. Using transient intracellular thermometry during stimulated proton uncoupling in neurons of Aplysia californica, we observe temperature spikes of ~7.5 K that decay over two time scales a rapid decay of ~4.8 K over ~1 s followed by a slower decay over ~17 s. The rapid decay correlates well in time with transient electrical heating from proton transport across the mitochondrial inner membrane. Beyond ~33 s, we do not observe any heating from intracellular sources, including substrate oxidation and pmf dissipation. Our measurements demonstrate the utility of transient thermometry in better understanding the thermochemistry of mitochondrial metabolism.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Protones / Calor / Mitocondrias Idioma: En Revista: Commun Biol Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Protones / Calor / Mitocondrias Idioma: En Revista: Commun Biol Año: 2019 Tipo del documento: Article