Your browser doesn't support javascript.
loading
Cellular mechanisms of hereditary photoreceptor degeneration - Focus on cGMP.
Power, Michael; Das, Soumyaparna; Schütze, Karin; Marigo, Valeria; Ekström, Per; Paquet-Durand, François.
Afiliación
  • Power M; Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Centre for Integrative Neurosciences (CIN), University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany.
  • Das S; Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany.
  • Schütze K; CellTool GmbH, Tutzing, Germany.
  • Marigo V; Department of Life Sciences, University of Modena and Reggio Emilia, Italy.
  • Ekström P; Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sweden.
  • Paquet-Durand F; Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany. Electronic address: francois.paquet-durand@klinikum.uni-tuebingen.de.
Prog Retin Eye Res ; 74: 100772, 2020 01.
Article en En | MEDLINE | ID: mdl-31374251
ABSTRACT
The cellular mechanisms underlying hereditary photoreceptor degeneration are still poorly understood, a problem that is exacerbated by the enormous genetic heterogeneity of this disease group. However, the last decade has yielded a wealth of new knowledge on degenerative pathways and their diversity. Notably, a central role of cGMP-signalling has surfaced for photoreceptor cell death triggered by a subset of disease-causing mutations. In this review, we examine key aspects relevant for photoreceptor degeneration of hereditary origin. The topics covered include energy metabolism, epigenetics, protein quality control, as well as cGMP- and Ca2+-signalling, and how the related molecular and metabolic processes may trigger photoreceptor demise. We compare and integrate evidence on different cell death mechanisms that have been associated with photoreceptor degeneration, including apoptosis, necrosis, necroptosis, and PARthanatos. A special focus is then put on the mechanisms of cGMP-dependent cell death and how exceedingly high photoreceptor cGMP levels may cause activation of Ca2+-dependent calpain-type proteases, histone deacetylases and poly-ADP-ribose polymerase. An evaluation of the available literature reveals that a large group of patients suffering from hereditary photoreceptor degeneration carry mutations that are likely to trigger cGMP-dependent cell death, making this pathway a prime target for future therapy development. Finally, an outlook is given into technological and methodological developments that will with time likely contribute to a comprehensive overview over the entire metabolic complexity of photoreceptor cell death. Building on such developments, new imaging technology and novel biomarkers may be used to develop clinical test strategies, that fully consider the genetic heterogeneity of hereditary retinal degenerations, in order to facilitate clinical testing of novel treatment approaches.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Degeneración Retiniana / Células Fotorreceptoras de Vertebrados Límite: Animals / Humans Idioma: En Revista: Prog Retin Eye Res Asunto de la revista: OFTALMOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Degeneración Retiniana / Células Fotorreceptoras de Vertebrados Límite: Animals / Humans Idioma: En Revista: Prog Retin Eye Res Asunto de la revista: OFTALMOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Alemania