Your browser doesn't support javascript.
loading
Exploring genetic interaction manifolds constructed from rich single-cell phenotypes.
Norman, Thomas M; Horlbeck, Max A; Replogle, Joseph M; Ge, Alex Y; Xu, Albert; Jost, Marco; Gilbert, Luke A; Weissman, Jonathan S.
Afiliación
  • Norman TM; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. thomas.norman@ucsf.edu luke.gilbert@ucsf.edu jonathan.weissman@ucsf.edu.
  • Horlbeck MA; Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
  • Replogle JM; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA.
  • Ge AY; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.
  • Xu A; Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
  • Jost M; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA.
  • Gilbert LA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.
  • Weissman JS; Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
Science ; 365(6455): 786-793, 2019 08 23.
Article en En | MEDLINE | ID: mdl-31395745
ABSTRACT
How cellular and organismal complexity emerges from combinatorial expression of genes is a central question in biology. High-content phenotyping approaches such as Perturb-seq (single-cell RNA-sequencing pooled CRISPR screens) present an opportunity for exploring such genetic interactions (GIs) at scale. Here, we present an analytical framework for interpreting high-dimensional landscapes of cell states (manifolds) constructed from transcriptional phenotypes. We applied this approach to Perturb-seq profiling of strong GIs mined from a growth-based, gain-of-function GI map. Exploration of this manifold enabled ordering of regulatory pathways, principled classification of GIs (e.g., identifying suppressors), and mechanistic elucidation of synergistic interactions, including an unexpected synergy between CBL and CNN1 driving erythroid differentiation. Finally, we applied recommender system machine learning to predict interactions, facilitating exploration of vastly larger GI manifolds.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Análisis de Secuencia de ARN / Epistasis Genética / Análisis de la Célula Individual Límite: Female / Humans Idioma: En Revista: Science Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Análisis de Secuencia de ARN / Epistasis Genética / Análisis de la Célula Individual Límite: Female / Humans Idioma: En Revista: Science Año: 2019 Tipo del documento: Article