Your browser doesn't support javascript.
loading
Emergent Glassy Dynamics in a Quantum Dimer Model.
Feldmeier, Johannes; Pollmann, Frank; Knap, Michael.
Afiliación
  • Feldmeier J; Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany and Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany.
  • Pollmann F; Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany and Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany.
  • Knap M; Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany and Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany.
Phys Rev Lett ; 123(4): 040601, 2019 Jul 26.
Article en En | MEDLINE | ID: mdl-31491242
ABSTRACT
We consider the quench dynamics of a two-dimensional quantum dimer model and determine the role of its kinematic constraints. We interpret the nonequilibrium dynamics in terms of the underlying equilibrium phase transitions consisting of a Berezinskii-Kosterlitz-Thouless (BKT) transition between a columnar ordered valence bond solid (VBS) and a valence bond liquid (VBL), as well as a first-order transition between a staggered VBS and the VBL. We find that quenches from a columnar VBS are ergodic and both order parameters and spatial correlations quickly relax to their thermal equilibrium. By contrast, the staggered side of the first-order transition does not display thermalization on numerically accessible timescales. Based on the model's kinematic constraints, we uncover a mechanism of relaxation that rests on emergent, highly detuned multidefect processes in a staggered background, which gives rise to slow, glassy dynamics at low temperatures even in the thermodynamic limit.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2019 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2019 Tipo del documento: Article País de afiliación: Alemania