Your browser doesn't support javascript.
loading
Approaching Quantization in Macroscopic Quantum Spin Hall Devices through Gate Training.
Lunczer, Lukas; Leubner, Philipp; Endres, Martin; Müller, Valentin L; Brüne, Christoph; Buhmann, Hartmut; Molenkamp, Laurens W.
Afiliación
  • Lunczer L; Physikalisches Institut (EP3), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
  • Leubner P; Institute for Topological Insulators, Am Hubland, D-97074 Würzburg, Germany.
  • Endres M; Physikalisches Institut (EP3), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
  • Müller VL; Physikalisches Institut (EP3), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
  • Brüne C; Physikalisches Institut (EP3), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
  • Buhmann H; Institute for Topological Insulators, Am Hubland, D-97074 Würzburg, Germany.
  • Molenkamp LW; Physikalisches Institut (EP3), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
Phys Rev Lett ; 123(4): 047701, 2019 Jul 26.
Article en En | MEDLINE | ID: mdl-31491275
Quantum spin Hall edge channels hold great promise as dissipationless one-dimensional conductors. However, the ideal quantized conductance of 2e^{2}/h is only found in very short channels-in contradiction with the expected protection against backscattering of the topological insulator state. In this Letter we show that enhancing the band gap does not improve quantization. When we instead alter the potential landscape by charging trap states in the gate dielectric using gate training, we approach conductance quantization for macroscopically long channels. Effectively, the scattering length increases to 175 µm, more than 1 order of magnitude longer than in previous works for HgTe-based quantum wells. Our experiments show that the distortion of the potential landscape by impurities, leading to puddle formation in the narrow gap material, is the major obstacle for observing undisturbed quantum spin Hall edge channel transport.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2019 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2019 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos