Your browser doesn't support javascript.
loading
Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells.
Agresti, A; Pazniak, A; Pescetelli, S; Di Vito, A; Rossi, D; Pecchia, A; Auf der Maur, M; Liedl, A; Larciprete, R; Kuznetsov, Denis V; Saranin, D; Di Carlo, A.
Afiliación
  • Agresti A; Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.
  • Pazniak A; Laboratory of Advanced Solar Energy, National University of Science and Technology 'MISiS', Moscow, Russia.
  • Pescetelli S; Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology 'MISiS', Moscow, Russia.
  • Di Vito A; Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.
  • Rossi D; Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.
  • Pecchia A; Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.
  • Auf der Maur M; Istituto per lo Studio Materiali Nanostrutturati-CNR, Rome, Italy.
  • Liedl A; Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy.
  • Larciprete R; INFN-LNF, Frascati, Italy.
  • Kuznetsov DV; INFN-LNF, Frascati, Italy.
  • Saranin D; CNR-Institute for Complex Systems, Rome, Italy.
  • Di Carlo A; Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology 'MISiS', Moscow, Russia.
Nat Mater ; 18(11): 1228-1234, 2019 11.
Article en En | MEDLINE | ID: mdl-31501556
ABSTRACT
To improve the efficiency of perovskite solar cells, careful device design and tailored interface engineering are needed to enhance optoelectronic properties and the charge extraction process at the selective electrodes. Here, we use two-dimensional transition metal carbides (MXene Ti3C2Tx) with various termination groups (Tx) to tune the work function (WF) of the perovskite absorber and the TiO2 electron transport layer (ETL), and to engineer the perovskite/ETL interface. Ultraviolet photoemission spectroscopy measurements and density functional theory calculations show that the addition of Ti3C2Tx to halide perovskite and TiO2 layers permits the tuning of the materials' WFs without affecting other electronic properties. Moreover, the dipole induced by the Ti3C2Tx at the perovskite/ETL interface can be used to change the band alignment between these layers. The combined action of WF tuning and interface engineering can lead to substantial performance improvements in MXene-modified perovskite solar cells, as shown by the 26% increase of power conversion efficiency and hysteresis reduction with respect to reference cells without MXene.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2019 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2019 Tipo del documento: Article País de afiliación: Italia