Your browser doesn't support javascript.
loading
Simultaneous targeting of DNA replication and homologous recombination in glioblastoma with a polyether ionophore.
Lim, Yi Chieh; Ensbey, Kathleen S; Offenhäuser, Carolin; D'souza, Rochelle C J; Cullen, Jason K; Stringer, Brett W; Quek, Hazel; Bruce, Zara C; Kijas, Amanda; Cianfanelli, Valentina; Mahboubi, Bijan; Smith, Fiona; Jeffree, Rosalind L; Wiesmüeller, Lisa; Wiegmans, Adrian P; Bain, Amanda; Lombard, Fanny J; Roberts, Tara L; Khanna, Kum Kum; Lavin, Martin F; Kim, Baek; Hamerlik, Petra; Johns, Terrance G; Coster, Mark J; Boyd, Andrew W; Day, Bryan W.
Afiliación
  • Lim YC; Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.
  • Ensbey KS; Brain Tumor Biology, Danish Cancer Society Research Center, Copenhagen, Denmark.
  • Offenhäuser C; Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.
  • D'souza RCJ; Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.
  • Cullen JK; Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.
  • Stringer BW; Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.
  • Quek H; Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.
  • Bruce ZC; Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.
  • Kijas A; Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.
  • Cianfanelli V; University of Queensland, Queensland, Australia.
  • Mahboubi B; Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark.
  • Smith F; Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA.
  • Jeffree RL; Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.
  • Wiesmüeller L; Department of Neurosurgery, Royal Brisbane and Women's Hospital, Queensland, Australia.
  • Wiegmans AP; Department of Obstetrics and Gynaecology, University of Ulm, Ulm, Germany.
  • Bain A; Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.
  • Lombard FJ; Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.
  • Roberts TL; University of Queensland, Queensland, Australia.
  • Khanna KK; Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia.
  • Lavin MF; School of Medicine, Ingham Institute, New South Wales, Australia.
  • Kim B; Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.
  • Hamerlik P; Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.
  • Johns TG; Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
  • Coster MJ; Brain Tumor Biology, Danish Cancer Society Research Center, Copenhagen, Denmark.
  • Boyd AW; Telethon Kids Institute, Perth, Australia.
  • Day BW; Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia.
Neuro Oncol ; 22(2): 216-228, 2020 02 20.
Article en En | MEDLINE | ID: mdl-31504812
ABSTRACT

BACKGROUND:

Despite significant endeavor having been applied to identify effective therapies to treat glioblastoma (GBM), survival outcomes remain intractable. The greatest nonsurgical benefit arises from radiotherapy, though tumors typically recur due to robust DNA repair. Patients could therefore benefit from therapies with the potential to prevent DNA repair and synergize with radiotherapy. In this work, we investigated the potential of salinomycin to enhance radiotherapy and further uncover novel dual functions of this ionophore to induce DNA damage and prevent repair.

METHODS:

In vitro primary GBM models and ex vivo GBM patient explants were used to determine the mechanism of action of salinomycin by immunoblot, flow cytometry, immunofluorescence, immunohistochemistry, and mass spectrometry. In vivo efficacy studies were performed using orthotopic GBM animal xenograft models. Salinomycin derivatives were synthesized to increase drug efficacy and explore structure-activity relationships.

RESULTS:

Here we report novel dual functions of salinomycin. Salinomycin induces toxic DNA lesions and prevents subsequent recovery by targeting homologous recombination (HR) repair. Salinomycin appears to target the more radioresistant GBM stem cell-like population and synergizes with radiotherapy to significantly delay tumor formation in vivo. We further developed salinomycin derivatives which display greater efficacy in vivo while retaining the same beneficial mechanisms of action.

CONCLUSION:

Our findings highlight the potential of salinomycin to induce DNA lesions and inhibit HR to greatly enhance the effect of radiotherapy. Importantly, first-generation salinomycin derivatives display greater efficacy and may pave the way for clinical testing of these agents.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Piranos / Neoplasias Encefálicas / Glioblastoma / Replicación del ADN / Reparación del ADN por Recombinación Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Neuro Oncol Asunto de la revista: NEOPLASIAS / NEUROLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Piranos / Neoplasias Encefálicas / Glioblastoma / Replicación del ADN / Reparación del ADN por Recombinación Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Neuro Oncol Asunto de la revista: NEOPLASIAS / NEUROLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Australia
...