Your browser doesn't support javascript.
loading
Locating Minimum Energy Crossings of Different Spin States Using the Fragment Molecular Orbital Method.
Kaliakin, Danil S; Fedorov, Dmitri G; Alexeev, Yuri; Varganov, Sergey A.
Afiliación
  • Kaliakin DS; Department of Chemistry , University of Nevada, Reno , 1664 N. Virginia Street , Reno , Nevada 89557-0216 , United States.
  • Fedorov DG; Research Center for Computational Design of Advanced Functional Materials (CD-FMat) , National Institute of Advanced Industrial Science and Technology (AIST) , Central 2, Umezono 1-1-1 , Tsukuba 305-8568 , Japan.
  • Alexeev Y; Computational Science Division and Argonne Leadership Computing Facility , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
  • Varganov SA; Department of Chemistry , University of Nevada, Reno , 1664 N. Virginia Street , Reno , Nevada 89557-0216 , United States.
J Chem Theory Comput ; 15(11): 6074-6084, 2019 Nov 12.
Article en En | MEDLINE | ID: mdl-31518121
ABSTRACT
Spin-dependent processes involving nonadiabatic transitions between electronic states with different spin multiplicities play important roles in the chemistry of complex systems. The rates of these processes can be predicted based on the molecular properties at the minimum energy crossing point (MECP) between electronic states. We present the development of the MECP search technique within the fragment molecular orbital (FMO) method applicable to large complex systems. The accuracy and scalability of the new method is demonstrated on several models of the metal-sulfur protein rubredoxin. The effect of the model size on the MECP geometry and relative energy is discussed. The fragment energy decomposition and spin density delocalization analyses reveal how different protein residues and solvent molecules contribute to stabilization of the spin states. The developed FMO-MECP method can help to clarify the role of nonadiabatic spin-dependent processes in complex systems and can be used for designing mutations aimed at controlling these processes in metalloproteins, including spin-dependent catalysis and electron transfer.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Teoría Cuántica / Modelos Moleculares Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Theory Comput Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Teoría Cuántica / Modelos Moleculares Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Theory Comput Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos
...