Your browser doesn't support javascript.
loading
Spatiotemporal delivery of basic fibroblast growth factor to directly and simultaneously attenuate cardiac fibrosis and promote cardiac tissue vascularization following myocardial infarction.
Fan, Zhaobo; Xu, Zhaobin; Niu, Hong; Sui, Yang; Li, Haichang; Ma, Jianjie; Guan, Jianjun.
Afiliación
  • Fan Z; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States of America.
  • Xu Z; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States of America.
  • Niu H; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Sui Y; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Li H; Department of Surgery, The Ohio State University, Columbus, OH 43210, United States of America.
  • Ma J; Department of Surgery, The Ohio State University, Columbus, OH 43210, United States of America.
  • Guan J; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States of America; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA. Electronic address: jguan22@wustl.edu.
J Control Release ; 311-312: 233-244, 2019 10.
Article en En | MEDLINE | ID: mdl-31521744
ABSTRACT
Following myocardial infarction (MI), the destruction of vasculature in the infarcted heart muscle and progression of cardiac fibrosis lead to cardiac function deterioration. Vascularization of the damaged tissue and prevention of cardiac fibrosis represent promising strategies to improve cardiac function. Herein we have developed a bFGF release system with suitable release kinetics to simultaneously achieve the two goals. The release system was based on an injectable, thermosensitive, and fast gelation hydrogel and bFGF. The hydrogel had gelation time <7 s. It can quickly solidify upon injection into tissue so as to increase drug retention in the tissue. Hydrogel complex modulus can be tuned by hydrogel solution concentration. The complex modulus of 176.6 Pa and lower allowed cardiac fibroblast to maintain its phenotype. Bioactive bFGF was able to gradually release from the hydrogel for 4 weeks. The released bFGF promoted cardiac fibroblast survival under ischemic conditions mimicking those of the infarcted hearts. It also attenuated cardiac fibroblasts from differentiating into myofibroblasts in the presence of TGFß when tested in 3D collagen model mimicking the scenario when the bFGF release system was injected into hearts. Furthermore, the released bFGF stimulated human umbilical endothelial cells to form endothelial lumen. After 4 weeks of implantation into infarcted hearts, the bFGF release system significantly increased blood vessel density, decreased myofibroblast density and collagen content, augmented cardiac cell survival/proliferation, and reduced macrophage density. In addition, the bFGF release system significantly increased cardiac function. These results demonstrate that delivery of bFGF with appropriate release kinetics alone may represent an efficient approach to control cardiac remodeling after MI.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Factor 2 de Crecimiento de Fibroblastos / Neovascularización Fisiológica / Hidrogeles / Infarto del Miocardio Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: J Control Release Asunto de la revista: FARMACOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Factor 2 de Crecimiento de Fibroblastos / Neovascularización Fisiológica / Hidrogeles / Infarto del Miocardio Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: J Control Release Asunto de la revista: FARMACOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos