Your browser doesn't support javascript.
loading
Fluorine-Substituted Dithienylbenzodiimide-Based n-Type Polymer Semiconductors for Organic Thin-Film Transistors.
Feng, Kui; Zhang, Xianhe; Wu, Ziang; Shi, Yongqiang; Su, Mengyao; Yang, Kun; Wang, Yang; Sun, Huiliang; Min, Jie; Zhang, Yujie; Cheng, Xing; Woo, Han Young; Guo, Xugang.
Afiliación
  • Feng K; Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics , Southern University of Science and Technology (SUSTech) , No. 1088, Xueyuan Road , Shenzhen 518055 , Guangdong , China.
  • Zhang X; The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , China.
  • Wu Z; Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics , Southern University of Science and Technology (SUSTech) , No. 1088, Xueyuan Road , Shenzhen 518055 , Guangdong , China.
  • Shi Y; Department of Chemistry , Korea University , Seoul 136-713 , South Korea.
  • Su M; Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics , Southern University of Science and Technology (SUSTech) , No. 1088, Xueyuan Road , Shenzhen 518055 , Guangdong , China.
  • Yang K; Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics , Southern University of Science and Technology (SUSTech) , No. 1088, Xueyuan Road , Shenzhen 518055 , Guangdong , China.
  • Wang Y; Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics , Southern University of Science and Technology (SUSTech) , No. 1088, Xueyuan Road , Shenzhen 518055 , Guangdong , China.
  • Sun H; Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics , Southern University of Science and Technology (SUSTech) , No. 1088, Xueyuan Road , Shenzhen 518055 , Guangdong , China.
  • Min J; Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics , Southern University of Science and Technology (SUSTech) , No. 1088, Xueyuan Road , Shenzhen 518055 , Guangdong , China.
  • Zhang Y; The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , China.
  • Cheng X; Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics , Southern University of Science and Technology (SUSTech) , No. 1088, Xueyuan Road , Shenzhen 518055 , Guangdong , China.
  • Woo HY; Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics , Southern University of Science and Technology (SUSTech) , No. 1088, Xueyuan Road , Shenzhen 518055 , Guangdong , China.
  • Guo X; Department of Chemistry , Korea University , Seoul 136-713 , South Korea.
ACS Appl Mater Interfaces ; 11(39): 35924-35934, 2019 Oct 02.
Article en En | MEDLINE | ID: mdl-31525945
ABSTRACT
Imide functionalization is one of the most effective approaches to develop electron-deficient building blocks for constructing n-type organic semiconductors. Driven by the attractive properties of imide-functionalized dithienylbenzodiimide (TBDI) and the promising device performance of TBDI-based polymers, a novel acceptor with increased electron affinity, fluorinated dithienylbenzodiimide (TFBDI), was designed with the hydrogen replaced by fluorine on the benzene core, and the synthetic challenges associated with this highly electron-deficient fluorinated imide building block are successfully overcome. TFBDI showed suppressed frontier molecular orbital energy levels as compared with TBDI. Copolymerizing this new electron-withdrawing TBDI with various donor co-units afforded a series of n-type polymer semiconductors TFBDI-T, TFBDI-Se, and TFBDI-BSe. All these TFBDI-based polymers exhibited a lower-lying lowest unoccupied molecular orbital (LUMO) energy level than the polymer analogue without fluorine. When applied in organic thin-film transistors, three polymers showed unipolar electron transport with large on-current/off-current ratios (Ion/Ioff) of 105-107. Among them, the selenophene-based polymer TFBDI-Se with the deepest-positioned LUMO and optimal chain stacking exhibited the highest electron mobility of 0.30 cm2 V-1 s-1. This result demonstrates that the new TFBDI is a highly attractive electron-deficient unit for enabling n-type polymer semiconductors, and the fluorination of imide-functionalized arenes offers an effective approach to develop more electron-deficient building blocks in organic electronics.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2019 Tipo del documento: Article País de afiliación: China