Your browser doesn't support javascript.
loading
Electrical Charge State Manipulation of Single Silicon Vacancies in a Silicon Carbide Quantum Optoelectronic Device.
Widmann, Matthias; Niethammer, Matthias; Fedyanin, Dmitry Yu; Khramtsov, Igor A; Rendler, Torsten; Booker, Ian D; Ul Hassan, Jawad; Morioka, Naoya; Chen, Yu-Chen; Ivanov, Ivan G; Son, Nguyen Tien; Ohshima, Takeshi; Bockstedte, Michel; Gali, Adam; Bonato, Cristian; Lee, Sang-Yun; Wrachtrup, Jörg.
Afiliación
  • Widmann M; 3. Physikalisches Institut and Research Center SCOPE and Integrated Quantum Science and Technology (IQST) , University of Stuttgart , Pfaffenwaldring 57 , 70569 Stuttgart , Germany.
  • Niethammer M; 3. Physikalisches Institut and Research Center SCOPE and Integrated Quantum Science and Technology (IQST) , University of Stuttgart , Pfaffenwaldring 57 , 70569 Stuttgart , Germany.
  • Fedyanin DY; Laboratory of Nanooptics and Plasmonics , Moscow Institute of Physics and Technology , 9 Institutsky Lane , 141700 Dolgoprudny , Russian Federation.
  • Khramtsov IA; Laboratory of Nanooptics and Plasmonics , Moscow Institute of Physics and Technology , 9 Institutsky Lane , 141700 Dolgoprudny , Russian Federation.
  • Rendler T; 3. Physikalisches Institut and Research Center SCOPE and Integrated Quantum Science and Technology (IQST) , University of Stuttgart , Pfaffenwaldring 57 , 70569 Stuttgart , Germany.
  • Booker ID; Department of Physics, Chemistry and Biology , Linköping University , SE-58183 Linköping , Sweden.
  • Ul Hassan J; Department of Physics, Chemistry and Biology , Linköping University , SE-58183 Linköping , Sweden.
  • Morioka N; 3. Physikalisches Institut and Research Center SCOPE and Integrated Quantum Science and Technology (IQST) , University of Stuttgart , Pfaffenwaldring 57 , 70569 Stuttgart , Germany.
  • Chen YC; 3. Physikalisches Institut and Research Center SCOPE and Integrated Quantum Science and Technology (IQST) , University of Stuttgart , Pfaffenwaldring 57 , 70569 Stuttgart , Germany.
  • Ivanov IG; Department of Physics, Chemistry and Biology , Linköping University , SE-58183 Linköping , Sweden.
  • Son NT; Department of Physics, Chemistry and Biology , Linköping University , SE-58183 Linköping , Sweden.
  • Ohshima T; National Institutes for Quantum and Radiological Science and Technology , Takasaki , Gunma 370-1292 , Japan.
  • Bockstedte M; Department Chemistry and Physics of Materials , University of Salzburg , Jakob-Haringer-Strasse 2a , 5020 Salzburg , Austria.
  • Gali A; Solid State Theory , University of Erlangen-Nuremberg , Staudstrasse 7B2 , 91058 Erlangen , Germany.
  • Bonato C; Wigner Research Centre for Physics , Hungarian Academy of Sciences , P.O. Box 49, H-1525 Budapest , Hungary.
  • Lee SY; Department of Atomic Physics , Budapest University of Technology and Economics , Budafoki út 8. , H-1111 Budapest , Hungary.
  • Wrachtrup J; Institute of Photonics and Quantum Sciences, SUPA , Heriot-Watt University , Edinburgh EH14 4AS , United Kingdom.
Nano Lett ; 19(10): 7173-7180, 2019 10 09.
Article en En | MEDLINE | ID: mdl-31532999
Color centers with long-lived spins are established platforms for quantum sensing and quantum information applications. Color centers exist in different charge states, each of them with distinct optical and spin properties. Application to quantum technology requires the capability to access and stabilize charge states for each specific task. Here, we investigate charge state manipulation of individual silicon vacancies in silicon carbide, a system which has recently shown a unique combination of long spin coherence time and ultrastable spin-selective optical transitions. In particular, we demonstrate charge state switching through the bias applied to the color center in an integrated silicon carbide optoelectronic device. We show that the electronic environment defined by the doping profile and the distribution of other defects in the device plays a key role for charge state control. Our experimental results and numerical modeling evidence that control of these complex interactions can, under certain conditions, enhance the photon emission rate. These findings open the way for deterministic control over the charge state of spin-active color centers for quantum technology and provide novel techniques for monitoring doping profiles and voltage sensing in microscopic devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos