Your browser doesn't support javascript.
loading
Uprooting defects to enable high-performance III-V optoelectronic devices on silicon.
Bioud, Youcef A; Boucherif, Abderraouf; Myronov, Maksym; Soltani, Ali; Patriarche, Gilles; Braidy, Nadi; Jellite, Mourad; Drouin, Dominique; Arès, Richard.
Afiliación
  • Bioud YA; Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, QC, Canada. Y.Bioud@USherbrooke.ca.
  • Boucherif A; Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, QC, Canada. A.Boucherif@USherbrooke.ca.
  • Myronov M; Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
  • Soltani A; Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, QC, Canada.
  • Patriarche G; Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Sud, Université Paris-Saclay, Route de Nozay, 91460, Marcoussis, France.
  • Braidy N; Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, QC, Canada.
  • Jellite M; Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
  • Drouin D; Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, QC, Canada.
  • Arès R; Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, QC, Canada.
Nat Commun ; 10(1): 4322, 2019 09 20.
Article en En | MEDLINE | ID: mdl-31541107
ABSTRACT
The monolithic integration of III-V compound semiconductor devices with silicon presents physical and technological challenges, linked to the creation of defects during the deposition process. Herein, a new defect elimination strategy in highly mismatched heteroepitaxy is demonstrated to achieve a ultra-low dislocation density, epi-ready Ge/Si virtual substrate on a wafer scale, using a highly scalable process. Dislocations are eliminated from the epilayer through dislocation-selective electrochemical deep etching followed by thermal annealing, which creates nanovoids that attract dislocations, facilitating their subsequent annihilation. The averaged dislocation density is reduced by over three orders of magnitude, from ~108 cm-2 to a lower-limit of ~104 cm-2 for 1.5 µm thick Ge layer. The optical properties indicate a strong enhancement of luminescence efficiency in GaAs grown on this virtual substrate. Collectively, this work demonstrates the promise for transfer of this technology to industrial-scale production of integrated photonic and optoelectronic devices on Si platforms in a cost-effective way.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Canadá