Your browser doesn't support javascript.
loading
Engineering a Genetically Encoded Magnetic Protein Crystal.
Li, Thomas L; Wang, Zegao; You, He; Ong, Qunxiang; Varanasi, Vamsi J; Dong, Mingdong; Lu, Bai; Pasca, Sergiu P; Cui, Bianxiao.
Afiliación
  • Li TL; Department of Chemistry , Stanford University , Stanford , California 94305 , United States.
  • Wang Z; Department of Psychiatry and Behavioral Sciences , Stanford University , Stanford , California 94305 , United States.
  • You H; Interdisciplinary Nanoscience Center , Aarhus University , Aarhus 8000 , Denmark.
  • Ong Q; School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China.
  • Varanasi VJ; Department of Chemistry , Stanford University , Stanford , California 94305 , United States.
  • Dong M; Department of Chemistry , Stanford University , Stanford , California 94305 , United States.
  • Lu B; Interdisciplinary Nanoscience Center , Aarhus University , Aarhus 8000 , Denmark.
  • Pasca SP; School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China.
  • Cui B; Department of Psychiatry and Behavioral Sciences , Stanford University , Stanford , California 94305 , United States.
Nano Lett ; 19(10): 6955-6963, 2019 10 09.
Article en En | MEDLINE | ID: mdl-31552740
ABSTRACT
Magnetogenetics is a new field that leverages genetically encoded proteins and protein assemblies that are sensitive to magnetic fields to study and manipulate cell behavior. Theoretical studies show that many proposed magnetogenetic proteins do not contain enough iron to generate substantial magnetic forces. Here, we have engineered a genetically encoded ferritin-containing protein crystal that grows inside mammalian cells. Each of these crystals contains more than 10 million ferritin subunits and is capable of mineralizing substantial amounts of iron. When isolated from cells and loaded with iron in vitro, these crystals generate magnetic forces that are 9 orders of magnitude larger than the forces from the single ferritin cages used in previous studies. These protein crystals are attracted to an applied magnetic field and move toward magnets even when internalized into cells. While additional studies are needed to realize the full potential of magnetogenetics, these results demonstrate the feasibility of engineering protein assemblies for magnetic sensing.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ferritinas / Imanes Límite: Animals / Humans Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ferritinas / Imanes Límite: Animals / Humans Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos