Your browser doesn't support javascript.
loading
The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system.
Roldin, Pontus; Ehn, Mikael; Kurtén, Theo; Olenius, Tinja; Rissanen, Matti P; Sarnela, Nina; Elm, Jonas; Rantala, Pekka; Hao, Liqing; Hyttinen, Noora; Heikkinen, Liine; Worsnop, Douglas R; Pichelstorfer, Lukas; Xavier, Carlton; Clusius, Petri; Öström, Emilie; Petäjä, Tuukka; Kulmala, Markku; Vehkamäki, Hanna; Virtanen, Annele; Riipinen, Ilona; Boy, Michael.
Afiliación
  • Roldin P; Division of Nuclear Physics, Department of Physics, Lund University, P. O. Box 118, SE-221 00, Lund, Sweden. pontus.roldin@nuclear.lu.se.
  • Ehn M; Institute for Atmospheric and Earth System Research (physics), University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.
  • Kurtén T; Institute for Atmospheric and Earth System Research (chemistry), University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.
  • Olenius T; Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91, Stockholm, Sweden.
  • Rissanen MP; Institute for Atmospheric and Earth System Research (physics), University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.
  • Sarnela N; Institute for Atmospheric and Earth System Research (physics), University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.
  • Elm J; Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark.
  • Rantala P; Institute for Atmospheric and Earth System Research (physics), University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.
  • Hao L; Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
  • Hyttinen N; Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland.
  • Heikkinen L; Institute for Atmospheric and Earth System Research (physics), University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.
  • Worsnop DR; Institute for Atmospheric and Earth System Research (physics), University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.
  • Pichelstorfer L; Aerodyne Research, Inc., Billerica, MA, 01821, USA.
  • Xavier C; Institute for Atmospheric and Earth System Research (physics), University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.
  • Clusius P; Division of Physics and Biophysics, Department of Materials Research and Physics, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
  • Öström E; Institute for Atmospheric and Earth System Research (physics), University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.
  • Petäjä T; Institute for Atmospheric and Earth System Research (physics), University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.
  • Kulmala M; Division of Nuclear Physics, Department of Physics, Lund University, P. O. Box 118, SE-221 00, Lund, Sweden.
  • Vehkamäki H; Institute for Atmospheric and Earth System Research (physics), University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.
  • Virtanen A; Institute for Atmospheric and Earth System Research (physics), University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.
  • Riipinen I; Institute for Atmospheric and Earth System Research (physics), University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.
  • Boy M; Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
Nat Commun ; 10(1): 4370, 2019 09 25.
Article en En | MEDLINE | ID: mdl-31554809
ABSTRACT
Over Boreal regions, monoterpenes emitted from the forest are the main precursors for secondary organic aerosol (SOA) formation and the primary driver of the growth of new aerosol particles to climatically important cloud condensation nuclei (CCN). Autoxidation of monoterpenes leads to rapid formation of Highly Oxygenated organic Molecules (HOM). We have developed the first model with near-explicit representation of atmospheric new particle formation (NPF) and HOM formation. The model can reproduce the observed NPF, HOM gas-phase composition and SOA formation over the Boreal forest. During the spring, HOM SOA formation increases the CCN concentration by ~10 % and causes a direct aerosol radiative forcing of -0.10 W/m2. In contrast, NPF reduces the number of CCN at updraft velocities < 0.2 m/s, and causes a direct aerosol radiative forcing of +0.15 W/m2. Hence, while HOM SOA contributes to climate cooling, NPF can result in climate warming over the Boreal forest.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Suecia