Your browser doesn't support javascript.
loading
Genetic dissection of the gene coexpression network underlying photosynthesis in Populus.
Xiao, Liang; Liu, Xin; Lu, Wenjie; Chen, Panfei; Quan, Mingyang; Si, Jingna; Du, Qingzhang; Zhang, Deqiang.
Afiliación
  • Xiao L; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.
  • Liu X; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  • Lu W; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  • Chen P; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.
  • Quan M; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  • Si J; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
  • Du Q; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.
  • Zhang D; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
Plant Biotechnol J ; 18(4): 1015-1026, 2020 04.
Article en En | MEDLINE | ID: mdl-31584236
Photosynthesis is a key reaction that ultimately generates the carbohydrates needed to form woody tissues in trees. However, the genetic regulatory network of protein-encoding genes (PEGs) and regulatory noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), underlying the photosynthetic pathway is unknown. Here, we integrated data from coexpression analysis, association studies (additive, dominance and epistasis), and expression quantitative trait nucleotide (eQTN) mapping to dissect the causal variants and genetic interaction network underlying photosynthesis in Populus. We initially used 30 PEGs, 6 miRNAs and 12 lncRNAs to construct a coexpression network based on the tissue-specific gene expression profiles of 15 Populus samples. Then, we performed association studies using a natural population of 435 unrelated Populus tomentosa individuals, and identified 72 significant associations (P ≤ 0.001, q ≤ 0.05) with diverse additive and dominance patterns underlying photosynthesis-related traits. Analysis of epistasis and eQTNs revealed that the complex genetic interactions in the coexpression network contribute to phenotypes at various levels. Finally, we demonstrated that heterologously expressing the most highly linked gene (PtoPsbX1) in this network significantly improved photosynthesis in Arabidopsis thaliana, pointing to the functional role of PtoPsbX1 in the photosynthetic pathway. This study provides an integrated strategy for dissecting a complex genetic interaction network, which should accelerate marker-assisted breeding efforts to genetically improve woody plants.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotosíntesis / Populus / Redes Reguladoras de Genes Idioma: En Revista: Plant Biotechnol J Asunto de la revista: BIOTECNOLOGIA / BOTANICA Año: 2020 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotosíntesis / Populus / Redes Reguladoras de Genes Idioma: En Revista: Plant Biotechnol J Asunto de la revista: BIOTECNOLOGIA / BOTANICA Año: 2020 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido