Your browser doesn't support javascript.
loading
Spatial control of heavy-fermion superconductivity in CeIrIn5.
Bachmann, Maja D; Ferguson, G M; Theuss, Florian; Meng, Tobias; Putzke, Carsten; Helm, Toni; Shirer, K R; Li, You-Sheng; Modic, K A; Nicklas, Michael; König, Markus; Low, D; Ghosh, Sayak; Mackenzie, Andrew P; Arnold, Frank; Hassinger, Elena; McDonald, Ross D; Winter, Laurel E; Bauer, Eric D; Ronning, Filip; Ramshaw, B J; Nowack, Katja C; Moll, Philip J W.
Afiliación
  • Bachmann MD; Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany.
  • Ferguson GM; School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK.
  • Theuss F; Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA.
  • Meng T; Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA.
  • Putzke C; Institute for Theoretical Physics, Technical University Dresden, D-01062 Dresden, Germany.
  • Helm T; Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany.
  • Shirer KR; Institute of Material Science and Engineering, École Polytechnique Fédéral de Lausanne (EPFL), 1015 Lausanne, Switzerland.
  • Li YS; Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany.
  • Modic KA; Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany.
  • Nicklas M; Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany.
  • König M; School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK.
  • Low D; Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany.
  • Ghosh S; Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany.
  • Mackenzie AP; Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany.
  • Arnold F; Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA.
  • Hassinger E; Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA.
  • McDonald RD; Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany.
  • Winter LE; School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK.
  • Bauer ED; Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany.
  • Ronning F; Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany.
  • Ramshaw BJ; Physik-Department, Technische Universität München, Garching, D-85748 Germany.
  • Nowack KC; Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
  • Moll PJW; Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Science ; 366(6462): 221-226, 2019 10 11.
Article en En | MEDLINE | ID: mdl-31601766
ABSTRACT
Although crystals of strongly correlated metals exhibit a diverse set of electronic ground states, few approaches exist for spatially modulating their properties. In this study, we demonstrate disorder-free control, on the micrometer scale, over the superconducting state in samples of the heavy-fermion superconductor CeIrIn5 We pattern crystals by focused ion beam milling to tailor the boundary conditions for the elastic deformation upon thermal contraction during cooling. The resulting nonuniform strain fields induce complex patterns of superconductivity, owing to the strong dependence of the transition temperature on the strength and direction of strain. These results showcase a generic approach to manipulating electronic order on micrometer length scales in strongly correlated matter without compromising the cleanliness, stoichiometry, or mean free path.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Science Año: 2019 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Science Año: 2019 Tipo del documento: Article País de afiliación: Alemania
...