Your browser doesn't support javascript.
loading
Visual Correspondences for Unsupervised Domain Adaptation on Electron Microscopy Images.
IEEE Trans Med Imaging ; 39(4): 1256-1267, 2020 04.
Article en En | MEDLINE | ID: mdl-31603817
We present an Unsupervised Domain Adaptation strategy to compensate for domain shifts on Electron Microscopy volumes. Our method aggregates visual correspondences-motifs that are visually similar across different acquisitions-to infer changes on the parameters of pretrained models, and enable them to operate on new data. In particular, we examine the annotations of an existing acquisition to determine pivot locations that characterize the reference segmentation, and use a patch matching algorithm to find their candidate visual correspondences in a new volume. We aggregate all the candidate correspondences by a voting scheme and we use them to construct a consensus heatmap: a map of how frequently locations on the new volume are matched to relevant locations from the original acquisition. This information allows us to perform model adaptations in two different ways: either by a) optimizing model parameters under a Multiple Instance Learning formulation, so that predictions between reference locations and their sets of correspondences agree, or by b) using high-scoring regions of the heatmap as soft labels to be incorporated in other domain adaptation pipelines, including deep learning ones. We show that these unsupervised techniques allow us to obtain high-quality segmentations on unannotated volumes, qualitatively consistent with results obtained under full supervision, for both mitochondria and synapses, with no need for new annotation effort.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Microscopía Electrónica / Aprendizaje Automático no Supervisado Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: IEEE Trans Med Imaging Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Microscopía Electrónica / Aprendizaje Automático no Supervisado Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: IEEE Trans Med Imaging Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos