Your browser doesn't support javascript.
loading
A Spatiotemporal Ventricular Myocyte Model Incorporating Mitochondrial Calcium Cycling.
Song, Zhen; Xie, Lai-Hua; Weiss, James N; Qu, Zhilin.
Afiliación
  • Song Z; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California. Electronic address: zsong@mednet.ucla.edu.
  • Xie LH; Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey.
  • Weiss JN; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
  • Qu Z; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California. Electronic address: zqu@mednet.ucla.edu.
Biophys J ; 117(12): 2349-2360, 2019 12 17.
Article en En | MEDLINE | ID: mdl-31623883
ABSTRACT
Intracellular calcium (Ca2+) cycling dynamics in cardiac myocytes are spatiotemporally generated by stochastic events arising from a spatially distributed network of coupled Ca2+ release units that interact with an intertwined mitochondrial network. In this study, we developed a spatiotemporal ventricular myocyte model that integrates mitochondria-related Ca2+ cycling components into our previously developed ventricular myocyte model consisting of a three-dimensional Ca2+ release unit network. Mathematical formulations of mitochondrial membrane potential, mitochondrial Ca2+ cycling, mitochondrial permeability transition pore stochastic opening and closing, intracellular reactive oxygen species signaling, and oxidized Ca2+/calmodulin-dependent protein kinase II signaling were incorporated into the model. We then used the model to simulate the effects of mitochondrial depolarization on mitochondrial Ca2+ cycling, Ca2+ spark frequency, and Ca2+ amplitude, which agree well with experimental data. We also simulated the effects of the strength of mitochondrial Ca2+ uniporters and their spatial localization on intracellular Ca2+ cycling properties, which substantially affected diastolic and systolic Ca2+ levels in the mitochondria but exhibited only a small effect on sarcoplasmic reticulum and cytosolic Ca2+ levels under normal conditions. We show that mitochondrial depolarization can cause Ca2+ waves and Ca2+ alternans, which agrees with previous experimental observations. We propose that this new, to our knowledge, spatiotemporal ventricular myocyte model, incorporating properties of mitochondrial Ca2+ cycling and reactive-oxygen-species-dependent signaling, will be useful for investigating the effects of mitochondria on intracellular Ca2+ cycling and action potential dynamics in ventricular myocytes.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Calcio / Miocitos Cardíacos / Ventrículos Cardíacos / Mitocondrias Cardíacas / Modelos Cardiovasculares Tipo de estudio: Prognostic_studies Idioma: En Revista: Biophys J Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Calcio / Miocitos Cardíacos / Ventrículos Cardíacos / Mitocondrias Cardíacas / Modelos Cardiovasculares Tipo de estudio: Prognostic_studies Idioma: En Revista: Biophys J Año: 2019 Tipo del documento: Article