Your browser doesn't support javascript.
loading
The FluPRINT dataset, a multidimensional analysis of the influenza vaccine imprint on the immune system.
Tomic, Adriana; Tomic, Ivan; Dekker, Cornelia L; Maecker, Holden T; Davis, Mark M.
Afiliación
  • Tomic A; Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94304, USA. info@adrianatomic.com.
  • Tomic I; Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, OX3 9DU, UK. info@adrianatomic.com.
  • Dekker CL; Independent Researcher, Stanford, USA.
  • Maecker HT; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94304, USA.
  • Davis MM; Human Immune Monitoring Center, Stanford University, Stanford, CA, 94304, USA.
Sci Data ; 6(1): 214, 2019 10 21.
Article en En | MEDLINE | ID: mdl-31636302
Machine learning has the potential to identify novel biological factors underlying successful antibody responses to influenza vaccines. The first attempts have revealed a high level of complexity in establishing influenza immunity, and many different cellular and molecular components are involved. Of note is that the previously identified correlates of protection fail to account for the majority of individual responses across different age groups and influenza seasons. Challenges remain from the small sample sizes in most studies and from often limited data sets, such as transcriptomic data. Here we report the creation of a unified database, FluPRINT, to enable large-scale studies exploring the cellular and molecular underpinnings of successful antibody responses to influenza vaccines. Over 3,000 parameters were considered, including serological responses to influenza strains, serum cytokines, cell phenotypes, and cytokine stimulations. FluPRINT, facilitates the application of machine learning algorithms for data mining. The data are publicly available and represent a resource to uncover new markers and mechanisms that are important for influenza vaccine immunogenicity.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vacunas contra la Influenza / Aprendizaje Automático / Inmunogenicidad Vacunal / Sistema Inmunológico Tipo de estudio: Prognostic_studies Límite: Adolescent / Adult / Aged / Aged80 / Child / Child, preschool / Female / Humans / Infant / Male Idioma: En Revista: Sci Data Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vacunas contra la Influenza / Aprendizaje Automático / Inmunogenicidad Vacunal / Sistema Inmunológico Tipo de estudio: Prognostic_studies Límite: Adolescent / Adult / Aged / Aged80 / Child / Child, preschool / Female / Humans / Infant / Male Idioma: En Revista: Sci Data Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido