Your browser doesn't support javascript.
loading
Novel Synthesis of Red Phosphorus Nanodot/Ti3C2Tx MXenes from Low-Cost Ti3SiC2 MAX Phases for Superior Lithium- and Sodium-Ion Batteries.
Zhang, Shunlong; Li, Xiao-Yan; Yang, Wentao; Tian, Huajun; Han, Zhongkang; Ying, Hangjun; Wang, Guoxiu; Han, Wei-Qiang.
Afiliación
  • Zhang S; School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , China.
  • Li XY; Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.
  • Yang W; School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , China.
  • Tian H; Centre for Clean Energy Technology, Faculty of Science , University of Technology Sydney , Sydney , NSW 2007 , Australia.
  • Han Z; Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.
  • Ying H; School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , China.
  • Wang G; Centre for Clean Energy Technology, Faculty of Science , University of Technology Sydney , Sydney , NSW 2007 , Australia.
  • Han WQ; School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , China.
ACS Appl Mater Interfaces ; 11(45): 42086-42093, 2019 Nov 13.
Article en En | MEDLINE | ID: mdl-31637912
MXenes, synthesized from MAX, have emerged as new energy-storage materials for a good combination of metallic conductivity and rich surface chemistry. The reported MXenes are synthesized mostly from Al-based MAX. It is still a big challenge to synthesize MXenes from abundant Si-based MAX because of its strong Ti-Si bonds. Here, we report for the first time a high-energy ultrasonic cell-crushing extraction method to successfully prepare Ti3C2Tx MXenes from Si-based MAX using a single low-concentration etchant. This novel strategy for preparing MXenes has a high extraction efficiency and is a fast preparation process of less than 2 h for selective etching of Si. Furthermore, through the high-energy ball-milling technology, unique P-O-Ti bonded red phosphorus nanodot/Ti3C2Tx (PTCT) composites were successfully prepared, which enable superior electrochemical performance in lithium- and sodium-ion batteries because of the double-morphology structure, where the amorphous nano red phosphorus particles were strongly absorbed to Ti3C2Tx MXene sheets, facilitating the transport of alkali ions during cycling processes. This novel synthesis method of Ti3C2Tx MXenes from Si-based MAX and unique P-O-Ti bonded PTCT composites opens a new door for preparing high-performance MXene-based materials and facilitating the development of low-cost MXenes and other two-dimensional materials for next-generation energy storage.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Health_economic_evaluation Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Health_economic_evaluation Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos