Your browser doesn't support javascript.
loading
Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology.
Ide, Masayuki; Ohnishi, Tetsuo; Toyoshima, Manabu; Balan, Shabeesh; Maekawa, Motoko; Shimamoto-Mitsuyama, Chie; Iwayama, Yoshimi; Ohba, Hisako; Watanabe, Akiko; Ishii, Takashi; Shibuya, Norihiro; Kimura, Yuka; Hisano, Yasuko; Murata, Yui; Hara, Tomonori; Morikawa, Momo; Hashimoto, Kenji; Nozaki, Yayoi; Toyota, Tomoko; Wada, Yuina; Tanaka, Yosuke; Kato, Tadafumi; Nishi, Akinori; Fujisawa, Shigeyoshi; Okano, Hideyuki; Itokawa, Masanari; Hirokawa, Nobutaka; Kunii, Yasuto; Kakita, Akiyoshi; Yabe, Hirooki; Iwamoto, Kazuya; Meno, Kohji; Katagiri, Takuya; Dean, Brian; Uchida, Kazuhiko; Kimura, Hideo; Yoshikawa, Takeo.
Afiliación
  • Ide M; Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Ohnishi T; Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
  • Toyoshima M; Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Balan S; Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Maekawa M; Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Shimamoto-Mitsuyama C; Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Iwayama Y; Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Ohba H; Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Watanabe A; Support Unit for Bio-Material Analysis, Research Division, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Ishii T; Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Shibuya N; Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Kimura Y; Research& Development Department, MCBI Inc, Tsukuba, Ibaraki, Japan.
  • Hisano Y; Department of Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan.
  • Murata Y; Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
  • Hara T; Department of Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan.
  • Morikawa M; Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
  • Hashimoto K; Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Nozaki Y; Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
  • Toyota T; Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Wada Y; Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
  • Tanaka Y; Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Kato T; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
  • Nishi A; Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Fujisawa S; Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Okano H; Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Itokawa M; Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan.
  • Hirokawa N; Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Kunii Y; Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Kakita A; Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, Japan.
  • Yabe H; Laboratory for Systems Neurophysiology, RIKEN Center for Brain Science, Wako, Saitama, Japan.
  • Iwamoto K; Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
  • Meno K; Center for Medical Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
  • Katagiri T; Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Dean B; Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan.
  • Uchida K; Department of Psychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, Fukushima, Japan.
  • Kimura H; Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan.
  • Yoshikawa T; Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan.
EMBO Mol Med ; 11(12): e10695, 2019 12.
Article en En | MEDLINE | ID: mdl-31657521
ABSTRACT
Mice with the C3H background show greater behavioral propensity for schizophrenia, including lower prepulse inhibition (PPI), than C57BL/6 (B6) mice. To characterize as-yet-unknown pathophysiologies of schizophrenia, we undertook proteomics analysis of the brain in these strains, and detected elevated levels of Mpst, a hydrogen sulfide (H2 S)/polysulfide-producing enzyme, and greater sulfide deposition in C3H than B6 mice. Mpst-deficient mice exhibited improved PPI with reduced storage sulfide levels, while Mpst-transgenic (Tg) mice showed deteriorated PPI, suggesting that "sulfide stress" may be linked to PPI impairment. Analysis of human samples demonstrated that the H2 S/polysulfides production system is upregulated in schizophrenia. Mechanistically, the Mpst-Tg brain revealed dampened energy metabolism, while maternal immune activation model mice showed upregulation of genes for H2 S/polysulfides production along with typical antioxidative genes, partly via epigenetic modifications. These results suggest that inflammatory/oxidative insults in early brain development result in upregulated H2 S/polysulfides production as an antioxidative response, which in turn cause deficits in bioenergetic processes. Collectively, this study presents a novel aspect of the neurodevelopmental theory for schizophrenia, unraveling a role of excess H2 S/polysulfides production.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Esquizofrenia / Sulfuros / Sulfuro de Hidrógeno Límite: Animals Idioma: En Revista: EMBO Mol Med Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Esquizofrenia / Sulfuros / Sulfuro de Hidrógeno Límite: Animals Idioma: En Revista: EMBO Mol Med Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article País de afiliación: Japón