Your browser doesn't support javascript.
loading
Ancestral hymenopteran queen pheromones do not share the broad phylogenetic repressive effects of honeybee queen mandibular pheromone.
Lovegrove, Mackenzie R; Dearden, Peter K; Duncan, Elizabeth J.
Afiliación
  • Lovegrove MR; Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa, New Zealand; School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
  • Dearden PK; Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa, New Zealand.
  • Duncan EJ; School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. Electronic address: e.j.duncan@leeds.ac.uk.
J Insect Physiol ; 119: 103968, 2019.
Article en En | MEDLINE | ID: mdl-31669583
Queen pheromones effect the reproductive division of labour, a defining feature of eusociality. Reproductive division of labour ensures that one, or a small number of, females are responsible for the majority of reproduction within a colony. Much work on the evolution and function of these pheromones has focussed on Queen Mandibular Pheromone (QMP) which is produced by the Western or European honeybee (Apis mellifera). QMP has phylogenetically broad effects, repressing reproduction in a variety of arthropods, including those distantly related to the honeybee such as the fruit fly Drosophila melanogaster. QMP is highly derived and has little chemical similarity to the majority of hymenopteran queen pheromones which are derived from cuticular hydrocarbons. This raises the question of whether the phylogenetically widespread repression of reproduction by QMP also occurs with more basal saturated hydrocarbon-based queen-pheromones. Using D. melanogaster we show that saturated hydrocarbons are incapable of repressing reproduction, unlike QMP. We also show no interaction between the four saturated hydrocarbons tested or between the saturated hydrocarbons and QMP, implying that there is no conservation in the mechanism of detection or action between these compounds. We propose that the phylogenetically broad reproductive repression seen in response to QMP is not a feature of all queen pheromones, but unique to QMP itself, which has implications for our understanding of how queen pheromones act and evolve.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Feromonas / Reproducción / Drosophila melanogaster / Alcanos Límite: Animals Idioma: En Revista: J Insect Physiol Año: 2019 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Feromonas / Reproducción / Drosophila melanogaster / Alcanos Límite: Animals Idioma: En Revista: J Insect Physiol Año: 2019 Tipo del documento: Article Pais de publicación: Reino Unido