Your browser doesn't support javascript.
loading
Semideterministic Entanglement between a Single Photon and an Atomic Ensemble.
Li, Jun; Zhou, Ming-Ti; Yang, Chao-Wei; Sun, Peng-Fei; Liu, Jian-Long; Bao, Xiao-Hui; Pan, Jian-Wei.
Afiliación
  • Li J; Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, An
  • Zhou MT; Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, An
  • Yang CW; Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, An
  • Sun PF; Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, An
  • Liu JL; Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, An
  • Bao XH; Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, An
  • Pan JW; Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, An
Phys Rev Lett ; 123(14): 140504, 2019 Oct 04.
Article en En | MEDLINE | ID: mdl-31702192
ABSTRACT
Entanglement between a single photon and a matter qubit is an indispensable resource for quantum repeater and quantum networks. With atomic ensembles, the entanglement creation probability is typically very low to inhibit high-order events. In this paper, we propose and experimentally realize a scheme that creates atom-photon entanglement with an intrinsic efficiency of 50%. We make use of Rydberg blockade to generate two collective excitations, lying in separate internal states. By introducing the momentum degree of freedom for the excitations, and interfering them via Raman coupling, we entangle the two excitations. Via retrieving one excitation, we create the entanglement between the polarization of a single photon and the momentum of the remaining atomic excitation, with a measured fidelity of 0.901(8). The retrieved optical field is verified to be genuine single photons. The realized entanglement may be employed to create entanglement between two distant nodes in a fully heralded way and with a much higher efficiency.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2019 Tipo del documento: Article País de afiliación: Antillas Neerlandesas

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2019 Tipo del documento: Article País de afiliación: Antillas Neerlandesas