Your browser doesn't support javascript.
loading
Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: A combined approach to good absorber of solar energy and intensification of heat transport.
Nayak, M K; Abdul Hakeem, A K; Ganga, B; Ijaz Khan, M; Waqas, M; Makinde, O D.
Afiliación
  • Nayak MK; Department of Physics, IHSE, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
  • Abdul Hakeem AK; Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, 641020, India.
  • Ganga B; Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, 641020, India.
  • Ijaz Khan M; Department of Mathematics, Quaid-I-Azam University, Islamabad, 45320, Pakistan. Electronic address: muhammad.khan4@myport.ac.uk.
  • Waqas M; NUTECH School of Applied Sciences and Humanities, National University of Technology, Islamabad 44000, Pakistan.
  • Makinde OD; Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha 7395, South Africa.
Comput Methods Programs Biomed ; 186: 105131, 2020 Apr.
Article en En | MEDLINE | ID: mdl-31733519
ABSTRACT

BACKGROUND:

The present work provides important insights regarding three dimensional unsteady magnetohydrodynamic flow and entropy generation of micropolar Casson Cross nanofluid subject to nonlinear thermal radiation and chemical reaction. The Buongiorno's nanofluid model featured with Brownian movement and thermophoresis is considered. Realistic aspects namely convective boundary condition, viscous dissipation and joule heating are introduced. The present problem is modeled by momentum, temperature, microrotation and nanoparticles concentration equations.

METHOD:

The non-dimensional highly nonlinear differential equations are solved numerically via shooting iteration technique together with 4th order Runge-Kutta integration scheme.

RESULTS:

The current study imparts a reasonable, pragmatic and realistic approach to a good absorber of solar energy. In addition, strong and visionary profiles of velocity, microrotation, temperature, nanoparticles concentration, entropy generation rate and Bejan number for concern nanofluids are presented. Besides, intensive physical interpretation of the involved thermophycal parameters has been well-addressed.

CONCLUSIONS:

The present investigation shows that strengthening of Weissenberg number uplifts the axial as well transverse fluid velocities while that of Hartmann number turns out to be a reverse trend. Furthermore, heat and mass transfer rates exhibit ascending and descending trends for intensified Brownian motion and thermophoresis respectively. Improved thermal boundary layer due to the upgrading temperature ratio parameter is another outcome of the current analysis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Energía Solar / Viscosidad / Entropía / Nanoestructuras / Calor Idioma: En Revista: Comput Methods Programs Biomed Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: India Pais de publicación: IE / IRELAND / IRLANDA

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Energía Solar / Viscosidad / Entropía / Nanoestructuras / Calor Idioma: En Revista: Comput Methods Programs Biomed Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: India Pais de publicación: IE / IRELAND / IRLANDA