Enhanced selective removal of arsenic(V) using a hybrid nanoscale zirconium molybdate embedded anion exchange resin.
Environ Sci Pollut Res Int
; 26(36): 37046-37053, 2019 Dec.
Article
en En
| MEDLINE
| ID: mdl-31745776
Selective removal of trace arsenic is crucial for obtaining safe drinking water. Here, the selective adsorptive performance of arsenate (As(V)) on a hybrid ZMAE (nanoscale zirconium molybdate embedded a macroporous anion exchange resin) was examined. It was found that the As(V) adsorption efficiency of ZMAE was almost retained in the presence of competing ions (NO3- or SO42-) up an [SO42-]/[As] or [NO3-]/[As] ratio of 150/1, whereas that of bare AE (anion exchange resin) was negligible for [SO4]/[As] over 15/1. In addition, the As(V) maximum adsorption capacity of ZMAE was found to be 41.2 mg/g, which is in contrast with the negligible adsorption of bare AE under sulfate-rich condition. The enhanced arsenate selectivity of ZMAE can be attributed to the excellent selectivity of ZM NPs (zirconium molybdate nanoparticles), which contributed up to 45% of the adsorption capacity of ZMAE. The behavior of ZMAE towards arsenate was compared with that towards phosphate showing similar adsorption performances between them, which indicates the similar affinity of ZMAE towards arsenate and phosphate. Finally, ZMAE examined for fixed-bed column adsorption for As(V) removal from synthetic As(V) water was effective for up to 5100 BVs, treating As(V) from 0.1 mg/L to below 0.01 mg/L (meeting the WHO guidelines).
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Arsénico
/
Contaminantes Químicos del Agua
/
Circonio
/
Purificación del Agua
/
Resinas de Intercambio Aniónico
/
Molibdeno
Idioma:
En
Revista:
Environ Sci Pollut Res Int
Asunto de la revista:
SAUDE AMBIENTAL
/
TOXICOLOGIA
Año:
2019
Tipo del documento:
Article
Pais de publicación:
Alemania