Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal.
Int J Biol Macromol
; 156: 1160-1173, 2020 Aug 01.
Article
en En
| MEDLINE
| ID: mdl-31756461
Novel highly effective amino-functionalized lignin-based biosorbent in the microsphere geometry (A-LMS) for removal of heavy metal ions, was synthesized via inverse suspension copolymerization of kraft lignin with poly(ethylene imine) grafting-agent and epoxy chloropropane cross-linker. Optimization of A-LMS synthesis, performed with respect to the quantity of sodium alginate emulsifier (1, 5 and 10 wt%), provides highly porous microspheres A-LMS_5, using 5 wt% emulsifier, with 800 ± 80 µm diameter, 7.68 m2 g-1 surface area and 7.7 mmol g-1 of terminal amino groups. Structural and surface characteristics were obtained from Brunauer-Emmett-Teller method, Fourier Transform-Infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and porosity determination. In a batch test, the influence of pH, A-LMS_5 dose, temperature, contact time on adsorption efficiency of Ni2+, Cd2+, As(V) and Cr(VI) ions were studied. The adsorption is spontaneous and feasible with maximum adsorption capacity of 74.84, 54.20, 53.12 and 49.42 mg g-1 for Cd2+, Cr(VI), As(V) and Ni2+ ions, respectively, obtained by using Langmuir model. Modeling of kinetic data indicated fast adsorbate removal rate with pore diffusional transport as rate limiting step (pseudo-second order model and Weber-Morris equations), thus further confirming high performances of produced bio-adsorbent for heavy metal ions removal.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Metales Pesados
/
Iones
/
Lignina
/
Microesferas
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Int J Biol Macromol
Año:
2020
Tipo del documento:
Article
Pais de publicación:
Países Bajos