Your browser doesn't support javascript.
loading
Towards a quantitative determination of strain in Bragg Coherent X-ray Diffraction Imaging: artefacts and sign convention in reconstructions.
Carnis, Jérôme; Gao, Lu; Labat, Stéphane; Kim, Young Yong; Hofmann, Jan P; Leake, Steven J; Schülli, Tobias U; Hensen, Emiel J M; Thomas, Olivier; Richard, Marie-Ingrid.
Afiliación
  • Carnis J; Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397, Marseille, France. jerome.carnis@desy.de.
  • Gao L; ID01/ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France. jerome.carnis@desy.de.
  • Labat S; Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, P. O. Box 513, 5600, MB, Eindhoven, The Netherlands.
  • Kim YY; Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397, Marseille, France.
  • Hofmann JP; Deutsches Elektronen-Synchrotron (DESY), D-22607, Hamburg, Germany.
  • Leake SJ; Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, P. O. Box 513, 5600, MB, Eindhoven, The Netherlands.
  • Schülli TU; ID01/ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France.
  • Hensen EJM; ID01/ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France.
  • Thomas O; Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, P. O. Box 513, 5600, MB, Eindhoven, The Netherlands.
  • Richard MI; Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397, Marseille, France.
Sci Rep ; 9(1): 17357, 2019 Nov 22.
Article en En | MEDLINE | ID: mdl-31758040
ABSTRACT
Bragg coherent X-ray diffraction imaging (BCDI) has emerged as a powerful technique to image the local displacement field and strain in nanocrystals, in three dimensions with nanometric spatial resolution. However, BCDI relies on both dataset collection and phase retrieval algorithms that can induce artefacts in the reconstruction. Phase retrieval algorithms are based on the fast Fourier transform (FFT). We demonstrate how to calculate the displacement field inside a nanocrystal from its reconstructed phase depending on the mathematical convention used for the FFT. We use numerical simulations to quantify the influence of experimentally unavoidable detector deficiencies such as blind areas or limited dynamic range as well as post-processing filtering on the reconstruction. We also propose a criterion for the isosurface determination of the object, based on the histogram of the reconstructed modulus. Finally, we study the capability of the phasing algorithm to quantitatively retrieve the surface strain (i.e., the strain of the surface voxels). This work emphasizes many aspects that have been neglected so far in BCDI, which need to be understood for a quantitative analysis of displacement and strain based on this technique. It concludes with the optimization of experimental parameters to improve throughput and to establish BCDI as a reliable 3D nano-imaging technique.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article País de afiliación: Francia