Your browser doesn't support javascript.
loading
Three-body interactions drive the transition to polar order in a simple flocking model.
Chatterjee, Purba; Goldenfeld, Nigel.
Afiliación
  • Chatterjee P; Department of Physics, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois 61801-3080, USA.
  • Goldenfeld N; Department of Physics, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois 61801-3080, USA.
Phys Rev E ; 100(4-1): 040602, 2019 Oct.
Article en En | MEDLINE | ID: mdl-31770962
ABSTRACT
A large class of mesoscopic or macroscopic flocking theories are coarse-grained from microscopic models that feature binary interactions as the chief aligning mechanism. However, while such theories seemingly predict the existence of polar order with just binary interactions, actomyosin motility assay experiments show that binary interactions are insufficient to obtain polar order, especially at high densities. To resolve this paradox, here we introduce a solvable one-dimensional flocking model and derive its stochastic hydrodynamics. We show that two-body interactions are insufficient to generate polar order unless the noise is non-Gaussian. We show that noisy three-body interactions in the microscopic theory allow us to capture all essential dynamical features of the flocking transition, in systems that achieve orientational order above a critical density.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos