Your browser doesn't support javascript.
loading
Understanding and predicting the diffusivity of organic chemicals for diffusive gradients in thin-films using a QSPR model.
Liu, Sisi; Jin, Lingmin; Yu, Haiying; Lv, Liang; Chen, Chang-Er; Ying, Guang-Guo.
Afiliación
  • Liu S; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Un
  • Jin L; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
  • Yu H; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
  • Lv L; Dalian Product Quality Inspection and Testing Institute Co., Ltd., Dalian, China.
  • Chen CE; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Un
  • Ying GG; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Un
Sci Total Environ ; 706: 135691, 2020 Mar 01.
Article en En | MEDLINE | ID: mdl-31784180
ABSTRACT
The diffusion coefficient (D) is a key physicochemical parameter for the diffusive gradients in thin films technique (DGT) for environmental sampling, which has been extended to organic chemicals (so called o-DGT). D can be measured in the laboratory, although for organic chemicals this parameter might be predicted based on chemical structure. Here we developed for the first time a Quantitative Structure-Property Relationship (QSPR) model to predict the D values. Twenty quantum chemical descriptors that quantify the electronic and energy properties of 120 organic compounds were selected together with molecular mass, solubility and hydrophobicity. The best QSPR model was established by using genetic algorithm and multiple linear regression (GA-MLR). The results indicated that the model derived from the average molecular polarizability (α), the chemical potential (ξ) and the global electrophilicity index (ω) could explain the diffusion of organics in o-DGT and had good statistical performance (R2 = 0.767, RMSE = 0.101). Different validation strategies confirmed that the developed model was robust and predictive. 93% of tested compounds were within the applicability domain (AD) and predicted accurately. We concluded that the proposed QSPR model can serve as an efficient predictive tool for new chemicals in the AD, would be useful to cross validate measured D values and provide a better the understanding of the diffusive behaviour of organics in o-DGT and measurements in the environment. It might also be useful in the non-target analysis with o-DGT for chemicals without measured D values.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Total Environ Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Total Environ Año: 2020 Tipo del documento: Article