Your browser doesn't support javascript.
loading
Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation.
Dolz, Jose; Desrosiers, Christian; Wang, Li; Yuan, Jing; Shen, Dinggang; Ben Ayed, Ismail.
Afiliación
  • Dolz J; Ecole de Technologie Superieure (ETS), University of Quebec, Montreal, QC, Canada. Electronic address: jose.dolz@etsmtl.ca.
  • Desrosiers C; Ecole de Technologie Superieure (ETS), University of Quebec, Montreal, QC, Canada.
  • Wang L; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA.
  • Yuan J; Xidian University, School of Mathematics and Statistics, Xi'an, China.
  • Shen D; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea. Electronic address: dinggang_shen@med.unc.edu.
  • Ben Ayed I; Ecole de Technologie Superieure (ETS), University of Quebec, Montreal, QC, Canada. Electronic address: ismail.benayed@etsmtl.ca.
Comput Med Imaging Graph ; 79: 101660, 2020 01.
Article en En | MEDLINE | ID: mdl-31785402
ABSTRACT
Precise 3D segmentation of infant brain tissues is an essential step towards comprehensive volumetric studies and quantitative analysis of early brain development. However, computing such segmentations is very challenging, especially for 6-month infant brain, due to the poor image quality, among other difficulties inherent to infant brain MRI, e.g., the isointense contrast between white and gray matter and the severe partial volume effect due to small brain sizes. This study investigates the problem with an ensemble of semi-dense fully convolutional neural networks (CNNs), which employs T1-weighted and T2-weighted MR images as input. We demonstrate that the ensemble agreement is highly correlated with the segmentation errors. Therefore, our method provides measures that can guide local user corrections. To the best of our knowledge, this work is the first ensemble of 3D CNNs for suggesting annotations within images. Our quasi-dense architecture allows the efficient propagation of gradients during training, while limiting the number of parameters, requiring one order of magnitude less parameters than popular medical image segmentation networks such as 3D U-Net (Çiçek, et al.). We also investigated the impact that early or late fusions of multiple image modalities might have on the performances of deep architectures. We report evaluations of our method on the public data of the MICCAI iSEG-2017 Challenge on 6-month infant brain MRI segmentation, and show very competitive results among 21 teams, ranking first or second in most metrics.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo / Imagen por Resonancia Magnética / Redes Neurales de la Computación / Imagenología Tridimensional Límite: Humans / Infant Idioma: En Revista: Comput Med Imaging Graph Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo / Imagen por Resonancia Magnética / Redes Neurales de la Computación / Imagenología Tridimensional Límite: Humans / Infant Idioma: En Revista: Comput Med Imaging Graph Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article