Your browser doesn't support javascript.
loading
scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data.
Alquicira-Hernandez, Jose; Sathe, Anuja; Ji, Hanlee P; Nguyen, Quan; Powell, Joseph E.
Afiliación
  • Alquicira-Hernandez J; Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia. j.alquicira@garvan.org.au.
  • Sathe A; Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia. j.alquicira@garvan.org.au.
  • Ji HP; Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, USA.
  • Nguyen Q; Stanford Genome Technology Center, Stanford University, Palo Alto, USA.
  • Powell JE; Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, USA.
Genome Biol ; 20(1): 264, 2019 12 12.
Article en En | MEDLINE | ID: mdl-31829268
Single-cell RNA sequencing has enabled the characterization of highly specific cell types in many tissues, as well as both primary and stem cell-derived cell lines. An important facet of these studies is the ability to identify the transcriptional signatures that define a cell type or state. In theory, this information can be used to classify an individual cell based on its transcriptional profile. Here, we present scPred, a new generalizable method that is able to provide highly accurate classification of single cells, using a combination of unbiased feature selection from a reduced-dimension space, and machine-learning probability-based prediction method. We apply scPred to scRNA-seq data from pancreatic tissue, mononuclear cells, colorectal tumor biopsies, and circulating dendritic cells and show that scPred is able to classify individual cells with high accuracy. The generalized method is available at https://github.com/powellgenomicslab/scPred/.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Análisis de Secuencia de ARN / Análisis de la Célula Individual Tipo de estudio: Evaluation_studies Idioma: En Revista: Genome Biol Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Análisis de Secuencia de ARN / Análisis de la Célula Individual Tipo de estudio: Evaluation_studies Idioma: En Revista: Genome Biol Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido