Your browser doesn't support javascript.
loading
Circadian Entrainment Triggers Maturation of Human In Vitro Islets.
Alvarez-Dominguez, Juan R; Donaghey, Julie; Rasouli, Niloofar; Kenty, Jennifer H R; Helman, Aharon; Charlton, Jocelyn; Straubhaar, Juerg R; Meissner, Alexander; Melton, Douglas A.
Afiliación
  • Alvarez-Dominguez JR; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
  • Donaghey J; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
  • Rasouli N; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
  • Kenty JHR; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
  • Helman A; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
  • Charlton J; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany.
  • Straubhaar JR; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
  • Meissner A; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany.
  • Melton DA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA. Electronic address: dmelton@harvard.edu.
Cell Stem Cell ; 26(1): 108-122.e10, 2020 01 02.
Article en En | MEDLINE | ID: mdl-31839570
ABSTRACT
Stem-cell-derived tissues could transform disease research and therapy, yet most methods generate functionally immature products. We investigate how human pluripotent stem cells (hPSCs) differentiate into pancreatic islets in vitro by profiling DNA methylation, chromatin accessibility, and histone modification changes. We find that enhancer potential is reset upon lineage commitment and show how pervasive epigenetic priming steers endocrine cell fates. Modeling islet differentiation and maturation regulatory circuits reveals genes critical for generating endocrine cells and identifies circadian control as limiting for in vitro islet function. Entrainment to circadian feeding/fasting cycles triggers islet metabolic maturation by inducing cyclic synthesis of energy metabolism and insulin secretion effectors, including antiphasic insulin and glucagon pulses. Following entrainment, hPSC-derived islets gain persistent chromatin changes and rhythmic insulin responses with a raised glucose threshold, a hallmark of functional maturity, and function within days of transplantation. Thus, hPSC-derived tissues are amenable to functional improvement by circadian modulation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diferenciación Celular / Islotes Pancreáticos / Ritmo Circadiano / Células Madre Pluripotentes Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Cell Stem Cell Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diferenciación Celular / Islotes Pancreáticos / Ritmo Circadiano / Células Madre Pluripotentes Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Cell Stem Cell Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos