Your browser doesn't support javascript.
loading
Nature of Excess Hydrated Proton at the Water-Air Interface.
Das, Sudipta; Imoto, Sho; Sun, Shumei; Nagata, Yuki; Backus, Ellen H G; Bonn, Mischa.
Afiliación
  • Das S; Department for Molecular Spectroscopy , Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.
  • Imoto S; Department for Molecular Spectroscopy , Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.
  • Sun S; Department for Molecular Spectroscopy , Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.
  • Nagata Y; Department of Physical Chemistry , University of Vienna , Währinger Strasse 42 , 1090 Vienna , Austria.
  • Backus EHG; Department for Molecular Spectroscopy , Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.
  • Bonn M; Department for Molecular Spectroscopy , Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.
J Am Chem Soc ; 142(2): 945-952, 2020 01 15.
Article en En | MEDLINE | ID: mdl-31867949
ABSTRACT
Understanding the interfacial molecular structure of acidic aqueous solutions is important in the context of, e.g., atmospheric chemistry, biophysics, and electrochemistry. The hydration of the interfacial proton is necessarily different from that in the bulk, given the lower effective density of water at the interface, but has not yet been elucidated. Here, using surface-specific vibrational spectroscopy, we probe the response of interfacial protons at the water-air interface and reveal the interfacial proton continuum. Combined with spectral calculations based on ab initio molecular dynamics simulations, the proton at the water-air interface is shown to be well-hydrated, despite the limited availability of hydration water, with both Eigen and Zundel structures coexisting at the interface. Notwithstanding the interfacial hydrated proton exhibiting bulk-like structures, a substantial interfacial stabilization by -1.3 ± 0.2 kcal/mol is observed experimentally, in good agreement with our free energy calculations. The surface propensity of the proton can be attributed to the interaction between the hydrated proton and its counterion.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2020 Tipo del documento: Article País de afiliación: Alemania