Your browser doesn't support javascript.
loading
Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart.
Honkoop, Hessel; de Bakker, Dennis Em; Aharonov, Alla; Kruse, Fabian; Shakked, Avraham; Nguyen, Phong D; de Heus, Cecilia; Garric, Laurence; Muraro, Mauro J; Shoffner, Adam; Tessadori, Federico; Peterson, Joshua Craiger; Noort, Wendy; Bertozzi, Alberto; Weidinger, Gilbert; Posthuma, George; Grün, Dominic; van der Laarse, Willem J; Klumperman, Judith; Jaspers, Richard T; Poss, Kenneth D; van Oudenaarden, Alexander; Tzahor, Eldad; Bakkers, Jeroen.
Afiliación
  • Honkoop H; Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.
  • de Bakker DE; Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.
  • Aharonov A; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
  • Kruse F; Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.
  • Shakked A; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
  • Nguyen PD; Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.
  • de Heus C; Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
  • Garric L; Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.
  • Muraro MJ; Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.
  • Shoffner A; Regeneration Next, Department of Cell Biology, Duke University Medical Center, Durham, United States.
  • Tessadori F; Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.
  • Peterson JC; Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
  • Noort W; Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
  • Bertozzi A; Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
  • Weidinger G; Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
  • Posthuma G; Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
  • Grün D; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
  • van der Laarse WJ; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, Netherlands.
  • Klumperman J; Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
  • Jaspers RT; Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
  • Poss KD; Regeneration Next, Department of Cell Biology, Duke University Medical Center, Durham, United States.
  • van Oudenaarden A; Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.
  • Tzahor E; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
  • Bakkers J; Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.
Elife ; 82019 12 23.
Article en En | MEDLINE | ID: mdl-31868166
While the heart regenerates poorly in mammals, efficient heart regeneration occurs in zebrafish. Studies in zebrafish have resulted in a model in which preexisting cardiomyocytes dedifferentiate and reinitiate proliferation to replace the lost myocardium. To identify which processes occur in proliferating cardiomyocytes we have used a single-cell RNA-sequencing approach. We uncovered that proliferating border zone cardiomyocytes have very distinct transcriptomes compared to the nonproliferating remote cardiomyocytes and that they resemble embryonic cardiomyocytes. Moreover, these cells have reduced expression of mitochondrial genes and reduced mitochondrial activity, while glycolysis gene expression and glucose uptake are increased, indicative for metabolic reprogramming. Furthermore, we find that the metabolic reprogramming of border zone cardiomyocytes is induced by Nrg1/ErbB2 signaling and is important for their proliferation. This mechanism is conserved in murine hearts in which cardiomyocyte proliferation is induced by activating ErbB2 signaling. Together these results demonstrate that glycolysis regulates cardiomyocyte proliferation during heart regeneration.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Regeneración / Pez Cebra / Transducción de Señal / Miocitos Cardíacos / Proliferación Celular / Reprogramación Celular / Análisis de la Célula Individual / Corazón Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Elife Año: 2019 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Regeneración / Pez Cebra / Transducción de Señal / Miocitos Cardíacos / Proliferación Celular / Reprogramación Celular / Análisis de la Célula Individual / Corazón Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Elife Año: 2019 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Reino Unido