Your browser doesn't support javascript.
loading
Fully controlled photonic spin in highly confined optical field.
Opt Express ; 27(23): 33621-33633, 2019 Nov 11.
Article en En | MEDLINE | ID: mdl-31878426
ABSTRACT
As an intrinsic attribute of light, the spin angular momentum (SAM) of photons has aroused considerable attention because of the fascinating properties emerging from light-matter interactions. We show that a diffraction-limited focal field with a steerable photonic spin structure in three dimensions can be produced under a 4π microscopic system. This is achieved by focusing two counter-propagating configurable vector beams produced in the coherent superposition of three different beams with x-polarization, y-polarization, and radial-polarization. By altering the amplitude factors of these resultant beams, the ratios between the three mutually orthogonal polarized components can be freely tuned within the focal plane, thereby allowing dynamic control over the spin orientation and ellipticity of the tightly focused optical field. The results demonstrated in this paper may find applications in spin-controlled nanophotonics.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2019 Tipo del documento: Article