Your browser doesn't support javascript.
loading
ManiNetCluster: a novel manifold learning approach to reveal the functional links between gene networks.
Nguyen, Nam D; Blaby, Ian K; Wang, Daifeng.
Afiliación
  • Nguyen ND; Deparment of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA.
  • Blaby IK; Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA. ikblaby@lbl.gov.
  • Wang D; US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, 4720, CA, USA. ikblaby@lbl.gov.
BMC Genomics ; 20(Suppl 12): 1003, 2019 Dec 30.
Article en En | MEDLINE | ID: mdl-31888454
BACKGROUND: The coordination of genomic functions is a critical and complex process across biological systems such as phenotypes or states (e.g., time, disease, organism, environmental perturbation). Understanding how the complexity of genomic function relates to these states remains a challenge. To address this, we have developed a novel computational method, ManiNetCluster, which simultaneously aligns and clusters gene networks (e.g., co-expression) to systematically reveal the links of genomic function between different conditions. Specifically, ManiNetCluster employs manifold learning to uncover and match local and non-linear structures among networks, and identifies cross-network functional links. RESULTS: We demonstrated that ManiNetCluster better aligns the orthologous genes from their developmental expression profiles across model organisms than state-of-the-art methods (p-value <2.2×10-16). This indicates the potential non-linear interactions of evolutionarily conserved genes across species in development. Furthermore, we applied ManiNetCluster to time series transcriptome data measured in the green alga Chlamydomonas reinhardtii to discover the genomic functions linking various metabolic processes between the light and dark periods of a diurnally cycling culture. We identified a number of genes putatively regulating processes across each lighting regime. CONCLUSIONS: ManiNetCluster provides a novel computational tool to uncover the genes linking various functions from different networks, providing new insight on how gene functions coordinate across different conditions. ManiNetCluster is publicly available as an R package at https://github.com/daifengwanglab/ManiNetCluster.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Genómica / Redes Reguladoras de Genes Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Genómica / Redes Reguladoras de Genes Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido