Your browser doesn't support javascript.
loading
Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma.
Tribble, James R; Vasalauskaite, Asta; Redmond, Tony; Young, Robert D; Hassan, Shoaib; Fautsch, Michael P; Sengpiel, Frank; Williams, Pete A; Morgan, James E.
Afiliación
  • Tribble JR; School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ Wales, UK.
  • Vasalauskaite A; Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden.
  • Redmond T; School of Biosciences, Cardiff University, Cardiff, CF10 3AX Wales, UK.
  • Young RD; School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ Wales, UK.
  • Hassan S; School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ Wales, UK.
  • Fautsch MP; School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XW Wales, UK.
  • Sengpiel F; Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA.
  • Williams PA; School of Biosciences, Cardiff University, Cardiff, CF10 3AX Wales, UK.
  • Morgan JE; Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden.
Brain Commun ; 1(1): fcz035, 2019.
Article en En | MEDLINE | ID: mdl-31894207
ABSTRACT
Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. However, the earliest degenerative events that occur in human glaucoma are relatively unknown. Work in animal models has demonstrated that retinal ganglion cell dendrites remodel and atrophy prior to the loss of the cell soma. Whether this occurs in human glaucoma has yet to be elucidated. Serial block face scanning electron microscopy is well established as a method to determine neuronal connectivity at high resolution but so far has only been performed in normal retina from animal models. To assess the structure-function relationship of early human glaucomatous neurodegeneration, regions of inner retina assessed to have none-to-moderate loss of retinal ganglion cell number were processed using serial block face scanning electron microscopy (n = 4 normal retinas, n = 4 glaucoma retinas). This allowed detailed 3D reconstruction of retinal ganglion cells and their intracellular components at a nanometre scale. In our datasets, retinal ganglion cell dendrites degenerate early in human glaucoma, with remodelling and redistribution of the mitochondria. We assessed the relationship between visual sensitivity and retinal ganglion cell density and discovered that this only partially conformed to predicted models of structure-function relationships, which may be affected by these early neurodegenerative changes. In this study, human glaucomatous retinal ganglion cells demonstrate compartmentalized degenerative changes as observed in animal models. Importantly, in these models, many of these changes have been demonstrated to be reversible, increasing the likelihood of translation to viable therapies for human glaucoma.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Brain Commun Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Brain Commun Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido
...