Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning.
Nat Commun
; 11(1): 130, 2020 01 08.
Article
en En
| MEDLINE
| ID: mdl-31913272
Center-involved diabetic macular edema (ci-DME) is a major cause of vision loss. Although the gold standard for diagnosis involves 3D imaging, 2D imaging by fundus photography is usually used in screening settings, resulting in high false-positive and false-negative calls. To address this, we train a deep learning model to predict ci-DME from fundus photographs, with an ROC-AUC of 0.89 (95% CI: 0.87-0.91), corresponding to 85% sensitivity at 80% specificity. In comparison, retinal specialists have similar sensitivities (82-85%), but only half the specificity (45-50%, p < 0.001). Our model can also detect the presence of intraretinal fluid (AUC: 0.81; 95% CI: 0.81-0.86) and subretinal fluid (AUC 0.88; 95% CI: 0.85-0.91). Using deep learning to make predictions via simple 2D images without sophisticated 3D-imaging equipment and with better than specialist performance, has broad relevance to many other applications in medical imaging.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Edema Macular
/
Retinopatía Diabética
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Límite:
Aged
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Nat Commun
Asunto de la revista:
BIOLOGIA
/
CIENCIA
Año:
2020
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido