Your browser doesn't support javascript.
loading
Ultrathin Silicon Membranes for in Situ Optical Analysis of Nanoparticle Translocation across a Human Blood-Brain Barrier Model.
Hudecz, Diána; Khire, Tejas; Chung, Hung Li; Adumeau, Laurent; Glavin, Dale; Luke, Emma; Nielsen, Morten S; Dawson, Kenneth A; McGrath, James L; Yan, Yan.
Afiliación
  • Hudecz D; Centre for BioNano Interactions, School of Chemistry , University College Dublin , Belfield, Dublin 4 , Ireland.
  • Khire T; Department of Biomedicine, Faculty of Health , Aarhus University , Høegh-Guldbergs Gade 10 , 8000 Aarhus , Denmark.
  • Chung HL; Department of Biomedical Engineering , University of Rochester , Rochester , New York 14627 , United States.
  • Adumeau L; Department of Biomedical Engineering , University of Rochester , Rochester , New York 14627 , United States.
  • Glavin D; Centre for BioNano Interactions, School of Chemistry , University College Dublin , Belfield, Dublin 4 , Ireland.
  • Luke E; Department of Biomedical Engineering , University of Rochester , Rochester , New York 14627 , United States.
  • Nielsen MS; Department of Biomedical Engineering , University of Rochester , Rochester , New York 14627 , United States.
  • Dawson KA; Department of Biomedicine, Faculty of Health , Aarhus University , Høegh-Guldbergs Gade 10 , 8000 Aarhus , Denmark.
  • McGrath JL; Lundbeck Foundation , Research Initiative on Brain Barriers and Drug Delivery , Scherfigsvej 7 , 2100 Copenhagen , Denmark.
  • Yan Y; Centre for BioNano Interactions, School of Chemistry , University College Dublin , Belfield, Dublin 4 , Ireland.
ACS Nano ; 14(1): 1111-1122, 2020 01 28.
Article en En | MEDLINE | ID: mdl-31914314
Here we present a blood-brain barrier (BBB) model that enables high-resolution imaging of nanoparticle (NP) interactions with endothelial cells and the capture of rare NP translocation events. The enabling technology is an ultrathin silicon nitride (SiN) membrane (0.5 µm pore size, 20% porosity, 400 nm thickness) integrated into a dual-chamber platform that facilitates imaging at low working distances (∼50 µm). The platform, the µSiM-BBB (microfluidic silicon membrane-BBB), features human brain endothelial cells and primary astrocytes grown on opposite sides of the membrane. The human brain endothelial cells form tight junctions on the ultrathin membranes and exhibit a significantly higher resistance to FITC-dextran diffusion than commercial membranes. The enhanced optical properties of the SiN membrane allow high-resolution live-cell imaging of three types of NPs, namely, 40 nm PS-COOH, 100 nm PS-COOH, and apolipoprotein E-conjugated 100 nm SiO2, interacting with the BBB. Despite the excellent barrier properties of the endothelial layer, we are able to document rare NP translocation events of NPs localized to lysosomal compartments of astrocytes on the "brain side" of the device. Although the translocation is always low, our data suggest that size and targeting ligand are important parameters for NP translocation across the BBB. As a platform that enables the detection of rare transmission across tight BBB layers, the µSiM-BBB is an important tool for the design of nanoparticle-based delivery of drugs to the central nervous system.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Silicio / Barrera Hematoencefálica / Nanopartículas / Imagen Óptica / Modelos Biológicos Límite: Humans Idioma: En Revista: ACS Nano Año: 2020 Tipo del documento: Article País de afiliación: Irlanda Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Silicio / Barrera Hematoencefálica / Nanopartículas / Imagen Óptica / Modelos Biológicos Límite: Humans Idioma: En Revista: ACS Nano Año: 2020 Tipo del documento: Article País de afiliación: Irlanda Pais de publicación: Estados Unidos