Your browser doesn't support javascript.
loading
Color image segmentation using adaptive hierarchical-histogram thresholding.
Li, Min; Wang, Lei; Deng, Shaobo; Zhou, Chunhua.
Afiliación
  • Li M; Nanchang Institute of Technology, Nanchang, Jiangxi, PR China.
  • Wang L; Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, Nanchang, Jiangxi, PR China.
  • Deng S; Nanchang Institute of Technology, Nanchang, Jiangxi, PR China.
  • Zhou C; Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, Nanchang, Jiangxi, PR China.
PLoS One ; 15(1): e0226345, 2020.
Article en En | MEDLINE | ID: mdl-31923214
Histogram-based thresholding is one of the widely applied techniques for conducting color image segmentation. The key to such techniques is the selection of a set of thresholds that can discriminate objects and background pixels. Many thresholding techniques have been proposed that use the shape information of histograms and identify the optimum thresholds at valleys. In this work, we introduce the novel concept of a hierarchical-histogram, which corresponds to a multigranularity abstraction of the color image. Based on this, we present a new histogram thresholding-Adaptive Hierarchical-Histogram Thresholding (AHHT) algorithm, which can adaptively identify the thresholds from valleys. The experimental results have demonstrated that the AHHT algorithm can obtain better segmentation results compared with the histon-based and the roughness-index-based techniques with drastically reduced time complexity.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Umbral Sensorial / Percepción Visual Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Umbral Sensorial / Percepción Visual Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos